This HTML5 document contains 36 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n13https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Element_distinctness_problem
dbo:wikiPageWikiLink
dbr:Misra–Gries_heavy_hitters_algorithm
Subject Item
dbr:Boyer–Moore_majority_vote_algorithm
dbo:wikiPageWikiLink
dbr:Misra–Gries_heavy_hitters_algorithm
Subject Item
dbr:Misra-Gries_heavy_hitters_algorithm
dbo:wikiPageWikiLink
dbr:Misra–Gries_heavy_hitters_algorithm
dbo:wikiPageRedirects
dbr:Misra–Gries_heavy_hitters_algorithm
Subject Item
dbr:Misra–Gries_heavy_hitters_algorithm
rdfs:label
Misra–Gries heavy hitters algorithm
rdfs:comment
Misra and Gries defined the heavy-hitters problem(though they did not introduce the term heavy-hitters) and described the first algorithmfor it in the paper Finding repeated elements. Their algorithmextends the Boyer-Moore majority finding algorithmin a significant way. Misra-Gries is one of the earliest streaming algorithms,and it is described below in those terms in section .
dcterms:subject
dbc:Streaming_algorithms
dbo:wikiPageID
71828332
dbo:wikiPageRevisionID
1118516346
dbo:wikiPageWikiLink
dbr:Misra–Gries_summary dbr:Multiset dbr:Jayadev_Misra dbc:Streaming_algorithms dbr:Bag dbr:Boyer–Moore_majority_vote_algorithm dbr:Set_(mathematics) dbr:David_Gries dbr:AVL_tree dbr:Streaming_algorithm
owl:sameAs
wikidata:Q114494862 n13:GhGws
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Refn dbt:Block_indent dbt:Math dbt:And dbt:Notin dbt:Indent
dbo:abstract
Misra and Gries defined the heavy-hitters problem(though they did not introduce the term heavy-hitters) and described the first algorithmfor it in the paper Finding repeated elements. Their algorithmextends the Boyer-Moore majority finding algorithmin a significant way. One version of the heavy-hitters problem is as follows: Given is abag b of n elements and an integer k ≥ 2. Find the values thatoccur more than n ÷ k times in b. The Misra-Gries algorithm solvesthe problem by making two passes over the values in b, while storingat most k values from b and their number of occurrences during thecourse of the algorithm. Misra-Gries is one of the earliest streaming algorithms,and it is described below in those terms in section .
prov:wasDerivedFrom
wikipedia-en:Misra–Gries_heavy_hitters_algorithm?oldid=1118516346&ns=0
dbo:wikiPageLength
7628
foaf:isPrimaryTopicOf
wikipedia-en:Misra–Gries_heavy_hitters_algorithm
Subject Item
dbr:Jayadev_Misra
dbo:wikiPageWikiLink
dbr:Misra–Gries_heavy_hitters_algorithm
Subject Item
dbr:Misra–Gries_summary
dbo:wikiPageWikiLink
dbr:Misra–Gries_heavy_hitters_algorithm
Subject Item
dbr:Streaming_algorithm
dbo:wikiPageWikiLink
dbr:Misra–Gries_heavy_hitters_algorithm
Subject Item
wikipedia-en:Misra–Gries_heavy_hitters_algorithm
foaf:primaryTopic
dbr:Misra–Gries_heavy_hitters_algorithm