This HTML5 document contains 36 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n9https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Info-metrics
dbo:wikiPageWikiLink
dbr:Minimal-entropy_martingale_measure
Subject Item
dbr:Minimal-entropy_martingale_measure
rdf:type
yago:PsychologicalFeature100023100 yago:StochasticProcess113561896 yago:Cognition100023271 yago:Model105890249 yago:WikicatStochasticProcesses yago:Abstraction100002137 yago:Content105809192 yago:Concept105835747 yago:Idea105833840 yago:Hypothesis105888929
rdfs:label
Minimal-entropy martingale measure
rdfs:comment
In probability theory, the minimal-entropy martingale measure (MEMM) is the risk-neutral probability measure that minimises the entropy difference between the objective probability measure, , and the risk-neutral measure, . In incomplete markets, this is one way of choosing a risk-neutral measure (from the infinite number available) so as to still maintain the no-arbitrage conditions.
dcterms:subject
dbc:Martingale_theory dbc:Game_theory
dbo:wikiPageID
36240181
dbo:wikiPageRevisionID
1122350744
dbo:wikiPageWikiLink
dbc:Martingale_theory dbr:Probability_theory dbr:Incomplete_market dbr:Risk-neutral_measure dbr:Martingale_measure dbr:Entropy dbc:Game_theory dbr:Martingale_(probability_theory) dbr:Kullback–Leibler_divergence
owl:sameAs
n9:fhum freebase:m.0k2l0j6 wikidata:Q17058048
dbo:abstract
In probability theory, the minimal-entropy martingale measure (MEMM) is the risk-neutral probability measure that minimises the entropy difference between the objective probability measure, , and the risk-neutral measure, . In incomplete markets, this is one way of choosing a risk-neutral measure (from the infinite number available) so as to still maintain the no-arbitrage conditions. The MEMM has the advantage that the measure will always be equivalent to the measure by construction. Another common choice of equivalent martingale measure is the minimal martingale measure, which minimises the variance of the equivalent martingale. For certain situations, the resultant measure will not be equivalent to . In a finite probability model, for objective probabilities and risk-neutral probabilities then one must minimise the Kullback–Leibler divergence subject to the requirement that the expected return is , where is the risk-free rate.
prov:wasDerivedFrom
wikipedia-en:Minimal-entropy_martingale_measure?oldid=1122350744&ns=0
dbo:wikiPageLength
1454
foaf:isPrimaryTopicOf
wikipedia-en:Minimal-entropy_martingale_measure
Subject Item
dbr:Minimal_entropy_martingale_measure
dbo:wikiPageWikiLink
dbr:Minimal-entropy_martingale_measure
dbo:wikiPageRedirects
dbr:Minimal-entropy_martingale_measure
Subject Item
wikipedia-en:Minimal-entropy_martingale_measure
foaf:primaryTopic
dbr:Minimal-entropy_martingale_measure