This HTML5 document contains 36 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n4http://dbpedia.org/resource/File:
n16https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n8http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Mimetic_interpolation
rdfs:label
Mimetic interpolation
rdfs:comment
In mathematics, mimetic interpolation is a method for interpolating differential forms. In contrast to other interpolation methods, which estimate a field at a location given its values on neighboring points, mimetic interpolation estimates the field's -form given the field's projection on neighboring grid elements. The grid elements can be grid points as well as cell edges or faces, depending on . Mimetic interpolation is particularly relevant in the context of vector and pseudo-vector fields as the method conserves line integrals and fluxes, respectively.
foaf:depiction
n8:PhiEdge2D.svg n8:Cell_indexing2.svg n8:DeRhamComplexInterpolation.svg
dcterms:subject
dbc:Interpolation dbc:Differential_forms
dbo:wikiPageID
70967383
dbo:wikiPageRevisionID
1125019348
dbo:wikiPageWikiLink
n4:Cell_indexing2.svg dbr:Interpolation dbr:Discrete_exterior_calculus dbr:Exterior_derivative dbr:Differential_form dbr:Bilinear_interpolation dbr:Linear_interpolation dbr:Orientability dbc:Interpolation dbr:Generalized_Stokes_theorem dbr:Triangular_function dbr:Pullback_(differential_geometry) dbc:Differential_forms dbr:Wedge_product n4:PhiEdge2D.svg n4:DeRhamComplexInterpolation.svg
owl:sameAs
wikidata:Q112666397 n16:GQ14t
dbp:wikiPageUsesTemplate
dbt:Reflist
dbo:thumbnail
n8:DeRhamComplexInterpolation.svg?width=300
dbo:abstract
In mathematics, mimetic interpolation is a method for interpolating differential forms. In contrast to other interpolation methods, which estimate a field at a location given its values on neighboring points, mimetic interpolation estimates the field's -form given the field's projection on neighboring grid elements. The grid elements can be grid points as well as cell edges or faces, depending on . Mimetic interpolation is particularly relevant in the context of vector and pseudo-vector fields as the method conserves line integrals and fluxes, respectively.
prov:wasDerivedFrom
wikipedia-en:Mimetic_interpolation?oldid=1125019348&ns=0
dbo:wikiPageLength
14011
foaf:isPrimaryTopicOf
wikipedia-en:Mimetic_interpolation
Subject Item
dbr:Mimetic_Interpolation
dbo:wikiPageWikiLink
dbr:Mimetic_interpolation
dbo:wikiPageRedirects
dbr:Mimetic_interpolation
Subject Item
wikipedia-en:Mimetic_interpolation
foaf:primaryTopic
dbr:Mimetic_interpolation