This HTML5 document contains 128 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbthttp://dbpedia.org/resource/Template:
dbpedia-elhttp://el.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
n16https://www.geeksforgeeks.org/largest-sum-contiguous-subarray/
dbrhttp://dbpedia.org/resource/
n24https://web.archive.org/web/20171026110814/https:/pdfs.semanticscholar.org/bea4/
n26http://rosettacode.org/wiki/
n12http://commons.wikimedia.org/wiki/Special:FilePath/
dctermshttp://purl.org/dc/terms/
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n21http://dbpedia.org/resource/File:
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
dbohttp://dbpedia.org/ontology/
dbpedia-srhttp://sr.dbpedia.org/resource/
n25http://alexeigor.wikidot.com/
dbpedia-vihttp://vi.dbpedia.org/resource/
n39https://pdfs.semanticscholar.org/bea4/
dbpedia-pthttp://pt.dbpedia.org/resource/
dbchttp://dbpedia.org/resource/Category:
n8https://core.ac.uk/download/pdf/
yagohttp://dbpedia.org/class/yago/
n27http://ltu.diva-portal.org/smash/get/diva2:995901/
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
yago-reshttp://yago-knowledge.org/resource/
n37https://global.dbpedia.org/id/
n13http://www.picb.ac.cn/~xiaohang/vimwiki/study/tanlirong/Algorithm/project/
n22http://cs.slu.edu/~goldwamh/courses/slu/csci314/2012_Fall/lectures/maxsubarray/
n42http://comjnl.oxfordjournals.org/content/32/2/
n36https://web.archive.org/web/20151010072051/http:/www.picb.ac.cn/~xiaohang/vimwiki/study/tanlirong/Algorithm/project/
n41http://dl.acm.org/
provhttp://www.w3.org/ns/prov#
foafhttp://xmlns.com/foaf/0.1/
n19http://www.algorithmist.com/index.php/
n28https://www.iis.sinica.edu.tw/~scm/2010/
dbpedia-zhhttp://zh.dbpedia.org/resource/
n38https://archive.org/details/
dbpedia-fahttp://fa.dbpedia.org/resource/
freebasehttp://rdf.freebase.com/ns/
owlhttp://www.w3.org/2002/07/owl#
dbpedia-kahttp://ka.dbpedia.org/resource/

Statements

Subject Item
dbr:Joseph_Born_Kadane
dbo:wikiPageWikiLink
dbr:Maximum_subarray_problem
dbo:knownFor
dbr:Maximum_subarray_problem
Subject Item
dbr:Ulf_Grenander
dbo:wikiPageWikiLink
dbr:Maximum_subarray_problem
dbo:knownFor
dbr:Maximum_subarray_problem
Subject Item
dbr:Kadane's_algorithm
dbo:wikiPageWikiLink
dbr:Maximum_subarray_problem
dbo:wikiPageRedirects
dbr:Maximum_subarray_problem
Subject Item
dbr:Kadane’s_Algorithm
dbo:wikiPageWikiLink
dbr:Maximum_subarray_problem
dbo:wikiPageRedirects
dbr:Maximum_subarray_problem
Subject Item
dbr:Maximum_subarray_problem
rdf:type
yago:PsychologicalFeature100023100 yago:Event100029378 yago:Activity100407535 dbo:Agent yago:Procedure101023820 yago:YagoPermanentlyLocatedEntity yago:WikicatOptimizationAlgorithmsAndMethods yago:Abstraction100002137 yago:Act100030358 yago:Algorithm105847438 yago:Rule105846932
rdfs:label
Maximum subarray problem Sublista contígua de soma máxima 最大子数列问题 Πρόβλημα μέγιστου αθροίσματος υποακολουθίας
rdfs:comment
In computer science, the maximum sum subarray problem, also known as the maximum segment sum problem, is the task of finding a contiguous subarray with the largest sum, within a given one-dimensional array A[1...n] of numbers. Formally, the task is to find indices and with , such that the sum is as large as possible. (Some formulations of the problem also allow the empty subarray to be considered; by convention, the sum of all values of the empty subarray is zero.) Each number in the input array A could be positive, negative, or zero. Some properties of this problem are: 在计算机科学中,最大子数列问题的目标是在数列的一维方向找到一个连续的子数列,使该子数列的和最大。例如,对一个数列 −2, 1, −3, 4, −1, 2, 1, −5, 4,其连续子数列中和最大的是 4, −1, 2, 1, 其和为6。 该问题最初由布朗大学的教授于1977年提出,当初他为了展示数字图像中一个简单的最大似然估计模型。不久之后卡内基梅隆大学的提出了该问题的线性算法。()。 Στην πληροφορική, το πρόβλημα μέγιστου αθροίσματος υποακολουθίας (Αγγλικά: maximum sum subarray problem) είναι ένα πρόβλημα όπου έχουμε μια σειρά (πίνακα) από αριθμούς (θετικούς, αρνητικούς ή μηδενικούς) και ψάχνουμε τη συνεχή υποσειρά (υποπίνακα) αριθμών που δίνει το μεγαλύτερο άθροισμα. Για παράδειγμα, στη σειρά των αριθμών −2, 1, −3, 4, −1, 2, 1, −5, 4 η υποσειρά αριθμών με το μέγιστο άθροισμα είναι η 4, −1, 2, 1, με άθροισμα 6. Em Ciência da Computação, encontrar a sublista contígua de maior soma a partir de uma lista de números é um problema bastante conhecido. Na seqüência acima, a sublista contígua de maior soma é [20, 50, -1, 3] e a soma total desse trecho é 72. Para uma lista que contenha apenas números positivos, o resultado de maior soma será simplesmente a lista inteira dada como entrada.
foaf:depiction
n12:Maximum_Subarray_Visualization.svg n12:Kadane_run_−2,1,−3,4,−1,2,1,−5,4.gif
dcterms:subject
dbc:Dynamic_programming dbc:Articles_with_example_Python_(programming_language)_code dbc:Optimization_algorithms_and_methods
dbo:wikiPageID
10575678
dbo:wikiPageRevisionID
1116070058
dbo:wikiPageWikiLink
dbr:Communications_of_the_ACM dbr:Shortest_path_problem dbr:Dynamic_programming dbc:Dynamic_programming dbr:Maximum_likelihood dbc:Optimization_algorithms_and_methods dbc:Articles_with_example_Python_(programming_language)_code dbr:Edsger_W._Dijkstra dbr:Array_data_structure n21:Maximum_Subarray_Visualization.svg dbr:Empty_sum dbr:Computer_science dbr:David_Gries dbr:Ulf_Grenander dbr:Divide-and-conquer_algorithm dbr:Richard_Bird_(computer_scientist) dbr:Min-plus_matrix_multiplication dbr:Sequence_analysis dbr:Michael_Shamos n21:Kadane_run_−2,1,−3,4,−1,2,1,−5,4.gif dbr:Loop_invariant dbr:Joseph_Born_Kadane dbr:Subset_sum_problem dbr:Carnegie_Mellon_University dbr:Python_(programming_language) dbr:Computer_vision dbr:Bird–Meertens_formalism dbr:The_Computer_Journal dbr:Jay_Kadane
dbo:wikiPageExternalLink
n8:82596333.pdf n13:Report.pdf%7Ctitle=Maximum n16: n19:Kadane's_Algorithm n22:%7Ctitle=Notes n24:1795adaf240b9db4195b9dc511bd8d46bff1.pdf n25:kadane n26:Greatest_subsequential_sum n27:FULLTEXT01.pdf n28:maximum-segment-sum-origin-and-derivation%7Ctitle=The n36:Report.pdf%7Carchive-date=2015-10-10%7Curl-status=dead n38:programmingpearl00bent n39:1795adaf240b9db4195b9dc511bd8d46bff1.pdf n41:citation.cfm%3Fid=314613.314823 n42:122.full.pdf
owl:sameAs
dbpedia-el:Πρόβλημα_μέγιστου_αθροίσματος_υποακολουθίας dbpedia-ka:უდიდესი_ქვემიმდევრობის_ამოცანა freebase:m.02qj76m yago-res:Maximum_subarray_problem dbpedia-vi:Bài_toán_mảng_con_lớn_nhất dbpedia-fa:مسئله_زیرآرایه_بیشینه dbpedia-zh:最大子数列问题 wikidata:Q1334332 dbpedia-pt:Sublista_contígua_de_soma_máxima n37:MeGM dbpedia-sr:Проблем_максималног_подниза
dbp:wikiPageUsesTemplate
dbt:Color dbt:Harvtxt dbt:Reflist dbt:Cite_web dbt:Cbignore dbt:Cn dbt:Sfn dbt:NoteFoot dbt:NoteTag dbt:Dead_link dbt:Expert_needed dbt:Citation_needed dbt:Citation
dbo:thumbnail
n12:Maximum_Subarray_Visualization.svg?width=300
dbp:bot
medic
dbp:date
May 2021
dbo:abstract
In computer science, the maximum sum subarray problem, also known as the maximum segment sum problem, is the task of finding a contiguous subarray with the largest sum, within a given one-dimensional array A[1...n] of numbers. Formally, the task is to find indices and with , such that the sum is as large as possible. (Some formulations of the problem also allow the empty subarray to be considered; by convention, the sum of all values of the empty subarray is zero.) Each number in the input array A could be positive, negative, or zero. For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: 1. * If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array. 2. * If the array contains all non-positive numbers, then a solution is any subarray of size 1 containing the maximal value of the array (or the empty subarray, if it is permitted). 3. * Several different sub-arrays may have the same maximum sum. This problem can be solved using several different algorithmic techniques, including brute force, divide and conquer, dynamic programming, and reduction to shortest paths. 在计算机科学中,最大子数列问题的目标是在数列的一维方向找到一个连续的子数列,使该子数列的和最大。例如,对一个数列 −2, 1, −3, 4, −1, 2, 1, −5, 4,其连续子数列中和最大的是 4, −1, 2, 1, 其和为6。 该问题最初由布朗大学的教授于1977年提出,当初他为了展示数字图像中一个简单的最大似然估计模型。不久之后卡内基梅隆大学的提出了该问题的线性算法。()。 Em Ciência da Computação, encontrar a sublista contígua de maior soma a partir de uma lista de números é um problema bastante conhecido. Na seqüência acima, a sublista contígua de maior soma é [20, 50, -1, 3] e a soma total desse trecho é 72. Tipicamente, a lista de números a ser computada como entrada deve ter números positivos e negativos. Dessa forma, ao encontrar um número negativo vizinho a uma sublista de maior soma computada até então, uma das dificuldades do problema no decorrer da sua resolução é avaliar se esse número negativo deve ser acrescido à sublista ou não. Essa avaliação é necessária porque depois de um número negativo poderão vir na seqüência um ou mais números positivos que compensem o decréscimo resultante da inclusão daquele número negativo. Por outro lado, esse mesmo número negativo vizinho poderá não ser incorporado à sublista de maior soma, pois o resultado final seria uma soma menor do que a obtida até então. Para uma lista que contenha apenas números positivos, o resultado de maior soma será simplesmente a lista inteira dada como entrada. Nos algoritmos que serão apresentados a seguir, quando uma lista de números negativos é dada como entrada ou ainda se uma sublista parcial computada ao longo da resolução do problema resultar numa soma negativa, o resultado deverá ser zero, ou seja, o equivalente a obter como resposta uma lista vazia. Στην πληροφορική, το πρόβλημα μέγιστου αθροίσματος υποακολουθίας (Αγγλικά: maximum sum subarray problem) είναι ένα πρόβλημα όπου έχουμε μια σειρά (πίνακα) από αριθμούς (θετικούς, αρνητικούς ή μηδενικούς) και ψάχνουμε τη συνεχή υποσειρά (υποπίνακα) αριθμών που δίνει το μεγαλύτερο άθροισμα. Για παράδειγμα, στη σειρά των αριθμών −2, 1, −3, 4, −1, 2, 1, −5, 4 η υποσειρά αριθμών με το μέγιστο άθροισμα είναι η 4, −1, 2, 1, με άθροισμα 6.
gold:hypernym
dbr:Task
prov:wasDerivedFrom
wikipedia-en:Maximum_subarray_problem?oldid=1116070058&ns=0
dbo:wikiPageLength
19198
foaf:isPrimaryTopicOf
wikipedia-en:Maximum_subarray_problem
Subject Item
dbr:Dynamic_programming
dbo:wikiPageWikiLink
dbr:Maximum_subarray_problem
Subject Item
dbr:Maximum_Subarray
dbo:wikiPageWikiLink
dbr:Maximum_subarray_problem
dbo:wikiPageRedirects
dbr:Maximum_subarray_problem
Subject Item
dbr:Maximum_segment_sum
dbo:wikiPageWikiLink
dbr:Maximum_subarray_problem
dbo:wikiPageRedirects
dbr:Maximum_subarray_problem
Subject Item
dbr:Maximum_segment_sum_problem
dbo:wikiPageWikiLink
dbr:Maximum_subarray_problem
dbo:wikiPageRedirects
dbr:Maximum_subarray_problem
Subject Item
dbr:Maximum_subarray
dbo:wikiPageWikiLink
dbr:Maximum_subarray_problem
dbo:wikiPageRedirects
dbr:Maximum_subarray_problem
Subject Item
dbr:Ruzzo–Tompa_algorithm
dbo:wikiPageWikiLink
dbr:Maximum_subarray_problem
Subject Item
dbr:Maximum_sum_subarray_problem
dbo:wikiPageWikiLink
dbr:Maximum_subarray_problem
dbo:wikiPageRedirects
dbr:Maximum_subarray_problem
Subject Item
dbr:Kadane's_Algorithm
dbo:wikiPageWikiLink
dbr:Maximum_subarray_problem
dbo:wikiPageRedirects
dbr:Maximum_subarray_problem
Subject Item
wikipedia-en:Maximum_subarray_problem
foaf:primaryTopic
dbr:Maximum_subarray_problem