This HTML5 document contains 39 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n5https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Control_theory
dbo:wikiPageWikiLink
dbr:Markov_chain_approximation_method
Subject Item
dbr:Harold_J._Kushner
dbo:wikiPageWikiLink
dbr:Markov_chain_approximation_method
Subject Item
dbr:Markov_chain_approximation_method
rdfs:label
Markov chain approximation method
rdfs:comment
In numerical methods for stochastic differential equations, the Markov chain approximation method (MCAM) belongs to the several numerical (schemes) approaches used in stochastic control theory. Regrettably the simple adaptation of the deterministic schemes for matching up to stochastic models such as the Runge–Kutta method does not work at all. The basic idea of the MCAM is to approximate the original by a chosen on a . In case of need, one must as well approximate the for one that matches up the Markov chain chosen to approximate the original stochastic process.
dcterms:subject
dbc:Markov_processes
dbo:wikiPageID
43415470
dbo:wikiPageRevisionID
786604445
dbo:wikiPageWikiLink
dbr:Cost_function_(control_theory) dbr:Markov_chain dbr:Stochastic_differential_equation dbr:Stochastic_process dbr:Optimal_control_theory dbr:Differential_equation dbc:Markov_processes dbr:Numerical_methods dbr:Numerical_analysis dbr:Stochastic_control_theory dbr:Control_theory dbr:Stochastic_processes dbr:Finite_state_space dbr:Stochastic_differential_equations dbr:Optimal_control dbr:Controlled_markov_process dbr:Controlled_process
owl:sameAs
n5:2Ni5H yago-res:Markov_chain_approximation_method wikidata:Q25303667 freebase:m.011f39_4
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Stochastic_processes
dbo:wikiPageInterLanguageLink
dbpedia-de:Markow-Kette
dbo:abstract
In numerical methods for stochastic differential equations, the Markov chain approximation method (MCAM) belongs to the several numerical (schemes) approaches used in stochastic control theory. Regrettably the simple adaptation of the deterministic schemes for matching up to stochastic models such as the Runge–Kutta method does not work at all. It is a powerful and widely usable set of ideas, due to the current infancy of stochastic control it might be even said 'insights.' for numerical and other approximations problems in stochastic processes. They represent counterparts from deterministic control theory such as optimal control theory. The basic idea of the MCAM is to approximate the original by a chosen on a . In case of need, one must as well approximate the for one that matches up the Markov chain chosen to approximate the original stochastic process.
prov:wasDerivedFrom
wikipedia-en:Markov_chain_approximation_method?oldid=786604445&ns=0
dbo:wikiPageLength
1901
foaf:isPrimaryTopicOf
wikipedia-en:Markov_chain_approximation_method
Subject Item
dbr:Thermodynamic_equilibrium
dbo:wikiPageWikiLink
dbr:Markov_chain_approximation_method
Subject Item
dbr:Markov_chain
dbo:wikiPageWikiLink
dbr:Markov_chain_approximation_method
Subject Item
dbr:List_of_things_named_after_Andrey_Markov
dbo:wikiPageWikiLink
dbr:Markov_chain_approximation_method
Subject Item
wikipedia-en:Markov_chain_approximation_method
foaf:primaryTopic
dbr:Markov_chain_approximation_method