This HTML5 document contains 92 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
n12https://web.archive.org/web/20100607001557/http:/www.cscamm.umd.edu/centpack/publications/files/
n17http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n25https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
n11https://web.archive.org/web/20100606202150/http:/www.cscamm.umd.edu/centpack/publications/files/
rdfshttp://www.w3.org/2000/01/rdf-schema#
n22https://github.com/Azrael3000/
freebasehttp://rdf.freebase.com/ns/
n13https://web.archive.org/web/20100607024124/http:/www.cscamm.umd.edu/centpack/publications/files/
n7https://web.archive.org/web/20090530093444/http:/me.aut.ac.ir/mkermani/PDF-files/Conferences/
n6http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:MUSCL_scheme
rdf:type
yago:DifferentialEquation106670521 yago:Message106598915 yago:MathematicalStatement106732169 dbo:Software yago:Abstraction100002137 yago:Equation106669864 yago:Communication100033020 yago:WikicatNumericalDifferentialEquations yago:Statement106722453
rdfs:label
MUSCL scheme
rdfs:comment
In the study of partial differential equations, the MUSCL scheme is a finite volume method that can provide highly accurate numerical solutions for a given system, even in cases where the solutions exhibit shocks, discontinuities, or large gradients. MUSCL stands for Monotonic Upstream-centered Scheme for Conservation Laws (van Leer, 1979), and the term was introduced in a seminal paper by Bram van Leer (van Leer, 1979). In this paper he constructed the first high-order, total variation diminishing (TVD) scheme where he obtained second order spatial accuracy.
foaf:depiction
n6:SodProbParabolicKTalbada.png n6:SodProbKTospre.png n6:LinExtrap.jpg n6:ParabolicExtrap.jpg n6:StepFirstOrdUpwind.png n6:StepKTsuperbee.png n6:StepParabolicKTalbada.png n6:StepSecOrdCentralDifference.png
dct:subject
dbc:Numerical_differential_equations dbc:Fluid_dynamics dbc:Computational_fluid_dynamics
dbo:wikiPageID
5732212
dbo:wikiPageRevisionID
1118330310
dbo:wikiPageWikiLink
dbr:Shock_tube dbr:AUSM dbr:Scalar_(mathematics) dbr:Riemann_solver dbr:Finite_difference dbr:SI dbr:Flux dbr:Communications_on_Pure_and_Applied_Mathematics dbc:Fluid_dynamics dbr:Spectral_radius dbc:Numerical_differential_equations dbr:Euler_equations_(fluid_dynamics) dbr:Finite_volume_method n17:SodProbKTospre.png dbr:Runge–Kutta n17:SodProbParabolicKTalbada.png dbr:High-resolution_scheme dbr:Partial_differential_equation dbr:Flux_limiter dbr:Fortran dbr:Vector_(geometric) dbr:Method_of_lines dbr:Sergei_K._Godunov dbr:Total_variation_diminishing n17:ParabolicExtrap.jpg dbr:Equation_of_state dbr:Godunov's_scheme dbr:Godunov's_theorem dbr:Sod_shock_tube dbr:Bram_van_Leer n17:StepSecOrdCentralDifference.png dbr:Courant–Friedrichs–Lewy_condition dbc:Computational_fluid_dynamics dbr:Eitan_Tadmor n17:StepFirstOrdUpwind.png n17:StepKTsuperbee.png n17:StepParabolicKTalbada.png n17:LinExtrap.jpg dbr:High_resolution_scheme
dbo:wikiPageExternalLink
n7:Amir_Kabir.pdf n11:KT_semi-discrete.JCP00-centpack.pdf n12:Kur-Lev_3rd_semi_discrete.SINUM00-centpack.pdf n13:NT2.JCP90-centpack.pdf n22:gees
owl:sameAs
yago-res:MUSCL_scheme freebase:m.0f1s0w wikidata:Q6719085 n25:4r1kk
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Numerical_PDE
dbo:thumbnail
n6:StepFirstOrdUpwind.png?width=300
dbo:abstract
In the study of partial differential equations, the MUSCL scheme is a finite volume method that can provide highly accurate numerical solutions for a given system, even in cases where the solutions exhibit shocks, discontinuities, or large gradients. MUSCL stands for Monotonic Upstream-centered Scheme for Conservation Laws (van Leer, 1979), and the term was introduced in a seminal paper by Bram van Leer (van Leer, 1979). In this paper he constructed the first high-order, total variation diminishing (TVD) scheme where he obtained second order spatial accuracy. The idea is to replace the piecewise constant approximation of Godunov's scheme by reconstructed states, derived from cell-averaged states obtained from the previous time-step. For each cell, slope limited, reconstructed left and right states are obtained and used to calculate fluxes at the cell boundaries (edges). These fluxes can, in turn, be used as input to a Riemann solver, following which the solutions are averaged and used to advance the solution in time. Alternatively, the fluxes can be used in Riemann-solver-free schemes, which are basically Rusanov-like schemes.
gold:hypernym
dbr:Method
prov:wasDerivedFrom
wikipedia-en:MUSCL_scheme?oldid=1118330310&ns=0
dbo:wikiPageLength
24920
foaf:isPrimaryTopicOf
wikipedia-en:MUSCL_scheme
Subject Item
dbr:Index_of_physics_articles_(M)
dbo:wikiPageWikiLink
dbr:MUSCL_scheme
Subject Item
dbr:List_of_numerical_analysis_topics
dbo:wikiPageWikiLink
dbr:MUSCL_scheme
Subject Item
dbr:Bram_van_Leer
dbo:wikiPageWikiLink
dbr:MUSCL_scheme
dbp:knownFor
dbr:MUSCL_scheme
dbo:knownFor
dbr:MUSCL_scheme
Subject Item
dbr:Total_variation_diminishing
dbo:wikiPageWikiLink
dbr:MUSCL_scheme
Subject Item
dbr:Finite_volume_method
dbo:wikiPageWikiLink
dbr:MUSCL_scheme
Subject Item
dbr:Flux_limiter
dbo:wikiPageWikiLink
dbr:MUSCL_scheme
Subject Item
dbr:Godunov's_scheme
dbo:wikiPageWikiLink
dbr:MUSCL_scheme
Subject Item
dbr:High-resolution_scheme
dbo:wikiPageWikiLink
dbr:MUSCL_scheme
Subject Item
dbr:Shock-capturing_method
dbo:wikiPageWikiLink
dbr:MUSCL_scheme
Subject Item
wikipedia-en:MUSCL_scheme
foaf:primaryTopic
dbr:MUSCL_scheme