This HTML5 document contains 74 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n19https://www.tms.org/pubs/journals/JOM/9710/Xu/
dctermshttp://purl.org/dc/terms/
n22https://spectrabase.com/spectrum/
dbohttp://dbpedia.org/ontology/
n15http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n25http://www.bibliofond.ru/view.aspx%3Fid=555884%3C/
n6https://global.dbpedia.org/id/
n16https://www.sigmaaldrich.com/catalog/product/aldrich/
n14https://www.gelest.com/wp-content/uploads/product_msds/AKN590-msds.pdf:
n26https://www.albemarle.com/storage/components/T401225.PDF:
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n17https://pubchem.ncbi.nlm.nih.gov/compound/
n7http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
n10https://ereztech.com/product/bistri-isopropylcyclopentadienylcalcium-12-dimethoxyethane-adduct-n-a/
dbphttp://dbpedia.org/property/
n20https://www.chemicalbook.com/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
n18https://www.nwmissouri.edu/naturalsciences/sds/s/Sodium%20tert-butoxide.pdf:

Statements

Subject Item
dbr:List_of_metal-organic_chemical_vapour_depostion_precursors
dbo:wikiPageWikiLink
dbr:List_of_metal-organic_chemical_vapour_deposition_precursors
dbo:wikiPageRedirects
dbr:List_of_metal-organic_chemical_vapour_deposition_precursors
Subject Item
dbr:List_of_metal-organic_chemical_vapour_deposition_precursors
rdfs:label
List of metal-organic chemical vapour deposition precursors
rdfs:comment
In chemistry, a precursor is a compound that contributes in a chemical reaction and produces another compound, or a chemical substance that gives rise to another more significant chemical product. Since several years metal-organic compounds are widely used as molecular precursors for the chemical vapor deposition process (MOCVD). The success of this method is mainly due to its adaptability and to the increasing interest for the low temperature deposition processes. Correlatively, the increasing demand of various thin film materials for new industrial applications is also a significant reason for the rapid development of MOCVD. Certainly, a wide variety of materials which could not be deposited by the conventional halide CVD process, because halide reactive do not exist or are not volatile,
foaf:depiction
n7:Sodium-2,2,6,6-tetramethylheptane-3,5-dionate-2D-structure.svg n7:Tris(2,2,6,6-tetramethyl-3,5-heptanedionato)iron(III)-2D-structure.svg n7:Tris(diethylamido)(tert-butylimido)tantalum(V)-2D-structure.svg n7:Sodium-hexafluoroacetylacetonate-2D-skeletal.svg n7:Lithium-isopropoxide-2D-structure.svg n7:Pentakis(dimethylamino)tantalum(V)-2D-structure.svg n7:Tris(ethylmethylamido)(tert-butylimido)tantalum(V)-2D-structure.svg n7:LiNtms2Trimer.png n7:(1)_Potassium_2,2,6,6-tetramethylheptane-3,5-dionate,_K(thd),_K(tmhd),_K(dpm),_C11H19KO2.png
dcterms:subject
dbc:Chemical_vapour_deposition_precursors
dbo:wikiPageID
61260201
dbo:wikiPageRevisionID
1110871692
dbo:wikiPageWikiLink
dbr:Dicyclohexylamidolithium dbr:Lithium_bis(n-butyldimethylsilyl)amide dbr:Lithium_bis(n-propyldimethylsilyl)amide dbr:Lithium_dimethylamide dbr:Lithium_hexa-iso-propoxytantalate dbr:Lithium_isopropoxide dbr:Lithium_tert-amyl(i-butyldimethylsilyl)amide dbr:Lithium_tert-amyl(i-propyldimethylsilyl)amide dbr:Lithium_tert-amyl(n-propyldimethylsilyl)amide dbr:Lithium_acetylacetonate dbr:Niobium(V)_ethoxide dbr:Lithium_bis(3,3-dimethylbutyldimethylsilyl)amide dbr:Lithium_bis(ethyldimethylsilyl)amide dbr:Lithium_bis(i-butyldimethylsilyl)amide n15:LiNtms2Trimer.png dbc:Chemical_vapour_deposition_precursors n15:Tris(2,2,6,6-tetramethyl-3,5-heptanedionato)iron(III)-2D-structure.svg dbr:Lithium_tert-amyl(triethylsilyl)amide n15:Tris(diethylamido)(tert-butylimido)tantalum(V)-2D-structure.svg dbr:Lithium_tetramethylheptanedionate dbr:Lithium_tert-butoxide n15:Tris(ethylmethylamido)(tert-butylimido)tantalum(V)-2D-structure.svg n15:Sodium-2,2,6,6-tetramethylheptane-3,5-dionate-2D-structure.svg n15:Sodium-hexafluoroacetylacetonate-2D-skeletal.svg dbr:Lithium_bis(trimethylsilyl)amide n15:Pentakis(dimethylamino)tantalum(V)-2D-structure.svg n15:Lithium-isopropoxide-2D-structure.svg dbr:Lithium_ethoxide n15:(1)_Potassium_2,2,6,6-tetramethylheptane-3,5-dionate,_K(thd),_K(tmhd),_K(dpm),_C11H19KO2.png
dbo:wikiPageExternalLink
n10: n14:%3Cref n16:496863%3Flang=en n16:521280%3Flang=en n17:Lithium-dimethylamide n16:760404%3Flang=en n16:j100043%3Flang=en n16:156671%3Flang=de&region=DE n16:400203%3Flang=en n18:%3Cref n17:Lithium-isopropoxide%23section=Chemical-and-Physical-Properties n17:Sodium-cyclopentadienide%23section=GHS-Classification%22 n19:Xu-9710.html n20:ChemicalProductProperty_EN_CB3759592.htm n22:IMGzWBmNgJE. n20:ChemicalProductProperty_EN_CB2739827.htm n25:nowiki%3E n26:%3Cref
owl:sameAs
wikidata:Q66084782 n6:9xxHN
dbp:wikiPageUsesTemplate
dbt:ISBN dbt:Reflist
dbo:thumbnail
n7:LiNtms2Trimer.png?width=300
dbo:abstract
In chemistry, a precursor is a compound that contributes in a chemical reaction and produces another compound, or a chemical substance that gives rise to another more significant chemical product. Since several years metal-organic compounds are widely used as molecular precursors for the chemical vapor deposition process (MOCVD). The success of this method is mainly due to its adaptability and to the increasing interest for the low temperature deposition processes. Correlatively, the increasing demand of various thin film materials for new industrial applications is also a significant reason for the rapid development of MOCVD. Certainly, a wide variety of materials which could not be deposited by the conventional halide CVD process, because halide reactive do not exist or are not volatile, can now be grown by MOCVD. This includes metals and different multi-component materials such as semiconductor and intermetallic compounds as well as carbides, nitrides, oxides, borides, silicides and chalcogenides. Further significant advantages of MOCVD over physical processes are a capability for large scale production, an easier automation, a good conformal coverage, the selectivity and the ability to produce metastable materials. Thus, much effort has been aimed at the synthesis of new molecular precursors. A productive overview is provided by several exceptional reviews covering fields of MOCVD such as, for instance, epitaxial growth of semiconductor compounds, and low temperature deposition of metals. An overview of metal-organic compounds used for the MOCVD growth of different kind of materials is reported in the following reviews.This is a list of prominent precursor complexes synthesized thus far with suited properties to be utilized for MOCVD processes.
prov:wasDerivedFrom
wikipedia-en:List_of_metal-organic_chemical_vapour_deposition_precursors?oldid=1110871692&ns=0
dbo:wikiPageLength
38778
foaf:isPrimaryTopicOf
wikipedia-en:List_of_metal-organic_chemical_vapour_deposition_precursors
Subject Item
dbr:Chemical_vapor_deposition
dbo:wikiPageWikiLink
dbr:List_of_metal-organic_chemical_vapour_deposition_precursors
Subject Item
wikipedia-en:List_of_metal-organic_chemical_vapour_deposition_precursors
foaf:primaryTopic
dbr:List_of_metal-organic_chemical_vapour_deposition_precursors