This HTML5 document contains 35 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n15https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Limited_principle_of_omniscience
rdfs:label
Limited principle of omniscience
rdfs:comment
In constructive mathematics, the limited principle of omniscience (LPO) and the lesser limited principle of omniscience (LLPO) are axioms that are nonconstructive but are weaker than the full law of the excluded middle. The LPO and LLPO axioms are used to gauge the amount of nonconstructivity required for an argument, as in constructive reverse mathematics. They are also related to weak counterexamples in the sense of Brouwer.
dcterms:subject
dbc:Constructivism_(mathematics)
dbo:wikiPageID
37440876
dbo:wikiPageRevisionID
1120162437
dbo:wikiPageWikiLink
dbr:Constructive_reverse_mathematics dbr:Constructive_mathematics dbr:Law_of_the_excluded_middle dbr:L.E.J._Brouwer dbc:Constructivism_(mathematics) dbr:Weak_counterexample dbr:Axiom
owl:sameAs
freebase:m.0nb3dhr n15:4qKn6 wikidata:Q6549544
dbp:wikiPageUsesTemplate
dbt:Cite_book dbt:Harvtxt dbt:Harv dbt:Mathlogic-stub dbt:Short_description dbt:SEP
dbo:abstract
In constructive mathematics, the limited principle of omniscience (LPO) and the lesser limited principle of omniscience (LLPO) are axioms that are nonconstructive but are weaker than the full law of the excluded middle. The LPO and LLPO axioms are used to gauge the amount of nonconstructivity required for an argument, as in constructive reverse mathematics. They are also related to weak counterexamples in the sense of Brouwer.
gold:hypernym
dbr:Axioms
prov:wasDerivedFrom
wikipedia-en:Limited_principle_of_omniscience?oldid=1120162437&ns=0
dbo:wikiPageLength
2890
foaf:isPrimaryTopicOf
wikipedia-en:Limited_principle_of_omniscience
Subject Item
dbr:Constructive_analysis
dbo:wikiPageWikiLink
dbr:Limited_principle_of_omniscience
Subject Item
dbr:Constructive_proof
dbo:wikiPageWikiLink
dbr:Limited_principle_of_omniscience
Subject Item
dbr:Constructive_set_theory
dbo:wikiPageWikiLink
dbr:Limited_principle_of_omniscience
Subject Item
dbr:Markov's_principle
dbo:wikiPageWikiLink
dbr:Limited_principle_of_omniscience
Subject Item
dbr:Extended_natural_numbers
dbo:wikiPageWikiLink
dbr:Limited_principle_of_omniscience
Subject Item
dbr:LPO
dbo:wikiPageWikiLink
dbr:Limited_principle_of_omniscience
dbo:wikiPageDisambiguates
dbr:Limited_principle_of_omniscience
Subject Item
dbr:Sylvester–Gallai_theorem
dbo:wikiPageWikiLink
dbr:Limited_principle_of_omniscience
Subject Item
wikipedia-en:Limited_principle_of_omniscience
foaf:primaryTopic
dbr:Limited_principle_of_omniscience