This HTML5 document contains 37 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
n7http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n12https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n13http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Labelled_enumeration_theorem
rdf:type
yago:Communication100033020 yago:Message106598915 yago:Proposition106750804 yago:Statement106722453 yago:WikicatMathematicalTheorems yago:Theorem106752293 yago:Abstraction100002137
rdfs:label
Labelled enumeration theorem
rdfs:comment
In combinatorial mathematics, the labelled enumeration theorem is the counterpart of the Pólya enumeration theorem for the labelled case, where we have a set of labelled objects given by an exponential generating function (EGF) g(z) which are being distributed into n slots and a permutation group G which permutes the slots, thus creating equivalence classes of configurations. There is a special re-labelling operation that re-labels the objects in the slots, assigning labels from 1 to k, where k is the total number of nodes, i.e. the sum of the number of nodes of the individual objects. The EGF of the number of different configurations under this re-labelling process is given by
foaf:depiction
n13:RelabelCycles.png
dcterms:subject
dbc:Theorems_in_combinatorics dbc:Enumerative_combinatorics dbc:Articles_containing_proofs
dbo:wikiPageID
34871920
dbo:wikiPageRevisionID
1041238773
dbo:wikiPageWikiLink
dbc:Theorems_in_combinatorics n7:RelabelCycles.png dbc:Enumerative_combinatorics dbr:Exponential_generating_function dbc:Articles_containing_proofs dbr:Combinatorics dbr:Pólya_enumeration_theorem dbr:Symmetric_group dbr:Generating_function
owl:sameAs
n12:4qCy5 freebase:m.0cv8cv yago-res:Labelled_enumeration_theorem wikidata:Q6466909
dbp:wikiPageUsesTemplate
dbt:Short_description
dbo:thumbnail
n13:RelabelCycles.png?width=300
dbo:abstract
In combinatorial mathematics, the labelled enumeration theorem is the counterpart of the Pólya enumeration theorem for the labelled case, where we have a set of labelled objects given by an exponential generating function (EGF) g(z) which are being distributed into n slots and a permutation group G which permutes the slots, thus creating equivalence classes of configurations. There is a special re-labelling operation that re-labels the objects in the slots, assigning labels from 1 to k, where k is the total number of nodes, i.e. the sum of the number of nodes of the individual objects. The EGF of the number of different configurations under this re-labelling process is given by In particular, if G is the symmetric group of order n (hence, |G| = n!), the functions can be further combined into a single generating function: which is exponential w.r.t. the variable z and ordinary w.r.t. the variable t.
prov:wasDerivedFrom
wikipedia-en:Labelled_enumeration_theorem?oldid=1041238773&ns=0
dbo:wikiPageLength
5082
foaf:isPrimaryTopicOf
wikipedia-en:Labelled_enumeration_theorem
Subject Item
dbr:Pólya_enumeration_theorem
dbo:wikiPageWikiLink
dbr:Labelled_enumeration_theorem
Subject Item
dbr:Symbolic_method_(combinatorics)
dbo:wikiPageWikiLink
dbr:Labelled_enumeration_theorem
Subject Item
wikipedia-en:Labelled_enumeration_theorem
foaf:primaryTopic
dbr:Labelled_enumeration_theorem