This HTML5 document contains 47 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n13https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Kuratowski_and_Ryll-Nardzewski_measurable_selection_theorem
rdfs:label
Kuratowski and Ryll-Nardzewski measurable selection theorem Auswahlsatz von Kuratowski und Ryll-Nardzewski
rdfs:comment
Der Auswahlsatz von Kuratowski und Ryll-Nardzewski, englisch Kuratowski-Ryll Nardzewski Selection Theorem, ist ein Lehrsatz des mathematischen Gebiets der Analysis, der auf die beiden polnischen Mathematiker Kazimierz Kuratowski und Czesław Ryll-Nardzewski zurückgeht. Der Satz behandelt die Frage, unter welchen Bedingungen einer mengenwertigen Abbildung zwischen einem Messraum und einem topologischen Raum unter Berücksichtigung von Messbarkeitsgesichtspunkten eine Auswahlabbildung zugehört. In mathematics, the Kuratowski–Ryll-Nardzewski measurable selection theorem is a result from measure theory that gives a sufficient condition for a multifunction to have a measurable selection function. It is named after the Polish mathematicians Kazimierz Kuratowski and Czesław Ryll-Nardzewski. Many classical selection results follow from this theorem and it is widely used in mathematical economics and optimal control.
dcterms:subject
dbc:Theorems_in_functional_analysis dbc:Theorems_in_measure_theory dbc:Descriptive_set_theory
dbo:wikiPageID
46310740
dbo:wikiPageRevisionID
1099968011
dbo:wikiPageWikiLink
dbr:Selection_function dbr:Measure_theory dbr:Multivalued_function dbr:Sigma-algebra dbr:Optimal_control dbr:Choice_function dbc:Theorems_in_functional_analysis dbr:Polish_space dbc:Theorems_in_measure_theory dbr:Selection_theorem dbr:Mathematical_economics dbr:Kazimierz_Kuratowski dbr:Measurable_space dbr:Czesław_Ryll-Nardzewski dbr:Borel_set dbc:Descriptive_set_theory
owl:sameAs
n13:2NAe1 dbpedia-de:Auswahlsatz_von_Kuratowski_und_Ryll-Nardzewski wikidata:Q25098853
dbp:wikiPageUsesTemplate
dbt:Functional_analysis dbt:Mathanalysis-stub dbt:Reflist
dbo:abstract
In mathematics, the Kuratowski–Ryll-Nardzewski measurable selection theorem is a result from measure theory that gives a sufficient condition for a multifunction to have a measurable selection function. It is named after the Polish mathematicians Kazimierz Kuratowski and Czesław Ryll-Nardzewski. Many classical selection results follow from this theorem and it is widely used in mathematical economics and optimal control. Der Auswahlsatz von Kuratowski und Ryll-Nardzewski, englisch Kuratowski-Ryll Nardzewski Selection Theorem, ist ein Lehrsatz des mathematischen Gebiets der Analysis, der auf die beiden polnischen Mathematiker Kazimierz Kuratowski und Czesław Ryll-Nardzewski zurückgeht. Der Satz behandelt die Frage, unter welchen Bedingungen einer mengenwertigen Abbildung zwischen einem Messraum und einem topologischen Raum unter Berücksichtigung von Messbarkeitsgesichtspunkten eine Auswahlabbildung zugehört.
prov:wasDerivedFrom
wikipedia-en:Kuratowski_and_Ryll-Nardzewski_measurable_selection_theorem?oldid=1099968011&ns=0
dbo:wikiPageLength
3092
foaf:isPrimaryTopicOf
wikipedia-en:Kuratowski_and_Ryll-Nardzewski_measurable_selection_theorem
Subject Item
dbr:Czesław_Ryll-Nardzewski
dbo:wikiPageWikiLink
dbr:Kuratowski_and_Ryll-Nardzewski_measurable_selection_theorem
Subject Item
dbr:Kazimierz_Kuratowski
dbo:wikiPageWikiLink
dbr:Kuratowski_and_Ryll-Nardzewski_measurable_selection_theorem
Subject Item
dbr:Kuratowski-Ryll-Nardzewski_measurable_selection_theorem
dbo:wikiPageWikiLink
dbr:Kuratowski_and_Ryll-Nardzewski_measurable_selection_theorem
dbo:wikiPageRedirects
dbr:Kuratowski_and_Ryll-Nardzewski_measurable_selection_theorem
Subject Item
dbr:Kuratowski–Ryll-Nardzewski_measurable_selection_theorem
dbo:wikiPageWikiLink
dbr:Kuratowski_and_Ryll-Nardzewski_measurable_selection_theorem
dbo:wikiPageRedirects
dbr:Kuratowski_and_Ryll-Nardzewski_measurable_selection_theorem
Subject Item
dbr:Multivalued_function
dbo:wikiPageWikiLink
dbr:Kuratowski_and_Ryll-Nardzewski_measurable_selection_theorem
Subject Item
dbr:Kuratowski_and_Ryll–Nardzewski_measurable_selection_theorem
dbo:wikiPageWikiLink
dbr:Kuratowski_and_Ryll-Nardzewski_measurable_selection_theorem
dbo:wikiPageRedirects
dbr:Kuratowski_and_Ryll-Nardzewski_measurable_selection_theorem
Subject Item
dbr:Selection_theorem
dbo:wikiPageWikiLink
dbr:Kuratowski_and_Ryll-Nardzewski_measurable_selection_theorem
Subject Item
wikipedia-en:Kuratowski_and_Ryll-Nardzewski_measurable_selection_theorem
foaf:primaryTopic
dbr:Kuratowski_and_Ryll-Nardzewski_measurable_selection_theorem