This HTML5 document contains 52 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
n13http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n5https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n18http://epubs.siam.org/tvp/resource/1/tprbau/v32/i3/
n11http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
n17http://www.mathnet.ru/php/archive.phtml%3Fwshow=paper&jrnid=tvp&paperid=1451&option_lang=eng%7Cdoi=10.1137/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Paul_Vitányi
dbo:wikiPageWikiLink
dbr:Kolmogorov_structure_function
dbp:knownFor
dbr:Kolmogorov_structure_function
dbo:knownFor
dbr:Kolmogorov_structure_function
Subject Item
dbr:Andrey_Kolmogorov
dbo:wikiPageWikiLink
dbr:Kolmogorov_structure_function
Subject Item
dbr:Kolmogorov_complexity
dbo:wikiPageWikiLink
dbr:Kolmogorov_structure_function
Subject Item
dbr:Kolmogorov_structure_function
rdfs:label
Kolmogorov structure function
rdfs:comment
In 1973, Andrey Kolmogorov proposed a non-probabilistic approach to statistics and model selection. Let each datum be a finite binary string and a model be a finite set of binary strings. Consider model classes consisting of models of given maximal Kolmogorov complexity.The Kolmogorov structure function of an individual data string expresses the relation between the complexity level constraint on a model class and the least log-cardinality of a model in the class containing the data. The structure function determines all stochastic properties of the individual data string: for every constrained model class it determines the individual best-fitting model in the class irrespective of whether the true model is in the model class considered or not. In the classical case we talk about a set of
foaf:depiction
n11:Estimator.jpg n11:Kolm_complexity_lect.jpg
dcterms:subject
dbc:Algorithmic_information_theory
dbo:wikiPageID
18010343
dbo:wikiPageRevisionID
1065352866
dbo:wikiPageWikiLink
dbr:Andrey_Kolmogorov dbr:Kolmogorov dbr:Jorma_Rissanen dbc:Algorithmic_information_theory dbr:Mathematical_model dbr:String_(computer_science) n13:Estimator.jpg dbr:Kolmogorov_complexity dbr:Maximum_likelihood dbr:Stochastic dbr:Minimal_sufficient_statistic n13:Kolm_complexity_lect.jpg dbr:Paul_Vitányi dbr:Denoising dbr:Sufficient_statistic dbr:Minimum_description_length dbr:Algorithmic_information_theory dbr:Rate_distortion
dbo:wikiPageExternalLink
n17:1132071 n18:p389_s1
owl:sameAs
n5:4mort freebase:m.047t3gq wikidata:Q5805968
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Quote dbt:Cite_book dbt:Cite_journal
dbo:thumbnail
n11:Kolm_complexity_lect.jpg?width=300
dbp:sign
dbr:Kolmogorov
dbp:source
announcement cited above
dbp:text
To each constructive object corresponds a function of a natural number k—the log of minimal cardinality of x-containing sets that allow definitions of complexity at most k. If the element x itself allows a simple definition, then the function drops to 0 even for small k. Lacking such definition, the element is "random" in a negative sense. But it is positively "probabilistically random" only when function having taken the value at a relatively small , then changes approximately as .
dbo:abstract
In 1973, Andrey Kolmogorov proposed a non-probabilistic approach to statistics and model selection. Let each datum be a finite binary string and a model be a finite set of binary strings. Consider model classes consisting of models of given maximal Kolmogorov complexity.The Kolmogorov structure function of an individual data string expresses the relation between the complexity level constraint on a model class and the least log-cardinality of a model in the class containing the data. The structure function determines all stochastic properties of the individual data string: for every constrained model class it determines the individual best-fitting model in the class irrespective of whether the true model is in the model class considered or not. In the classical case we talk about a set of data with a probability distribution, and the properties are those of the expectations. In contrast, here we deal with individual data strings and the properties of the individual string focused on. In this setting, a property holds with certainty rather than with high probability as in the classical case. The Kolmogorov structure function precisely quantifies the goodness-of-fit of an individual model with respect to individual data. The Kolmogorov structure function is used in the algorithmic information theory, also known as the theory of Kolmogorov complexity, for describing the structure of a string by use of models of increasing complexity.
prov:wasDerivedFrom
wikipedia-en:Kolmogorov_structure_function?oldid=1065352866&ns=0
dbo:wikiPageLength
16844
foaf:isPrimaryTopicOf
wikipedia-en:Kolmogorov_structure_function
Subject Item
dbr:Acoustic_Doppler_current_profiler
dbo:wikiPageWikiLink
dbr:Kolmogorov_structure_function
Subject Item
dbr:Minimum_description_length
dbo:wikiPageWikiLink
dbr:Kolmogorov_structure_function
Subject Item
dbr:Richard_V._E._Lovelace
dbo:wikiPageWikiLink
dbr:Kolmogorov_structure_function
Subject Item
dbr:Sufficient_statistic
dbo:wikiPageWikiLink
dbr:Kolmogorov_structure_function
Subject Item
wikipedia-en:Kolmogorov_structure_function
foaf:primaryTopic
dbr:Kolmogorov_structure_function