This HTML5 document contains 25 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n15https://www.utdallas.edu/~sethi/Postscript/
n14https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Convex_function
dbo:wikiPageWikiLink
dbr:K-convex_function
Subject Item
dbr:K-convex_function
rdfs:label
K-convex function
rdfs:comment
K-convex functions, first introduced by Scarf, are a special weakening of the concept of convex function which is crucial in the proof of the optimality of the policy in inventory control theory. The policy is characterized by two numbers s and S, , such that when the inventory level falls below level s, an order is issued for a quantity that brings the inventory up to level S, and nothing is ordered otherwise. Gallego and Sethi have generalized the concept of K-convexity to higher dimensional Euclidean spaces.
dcterms:subject
dbc:Types_of_functions dbc:Convex_analysis
dbo:wikiPageID
47070537
dbo:wikiPageRevisionID
1119691729
dbo:wikiPageWikiLink
dbc:Types_of_functions dbr:Inventory_theory dbr:Convex_function dbr:Mathematical_optimization dbr:Herbert_Scarf dbc:Convex_analysis
dbo:wikiPageExternalLink
n15:Kconvexity091504.pdf
owl:sameAs
wikidata:Q25111447 n14:2N6rZ
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Mvar dbt:Convex_analysis_and_variational_analysis dbt:Cite_journal
dbo:abstract
K-convex functions, first introduced by Scarf, are a special weakening of the concept of convex function which is crucial in the proof of the optimality of the policy in inventory control theory. The policy is characterized by two numbers s and S, , such that when the inventory level falls below level s, an order is issued for a quantity that brings the inventory up to level S, and nothing is ordered otherwise. Gallego and Sethi have generalized the concept of K-convexity to higher dimensional Euclidean spaces.
prov:wasDerivedFrom
wikipedia-en:K-convex_function?oldid=1119691729&ns=0
dbo:wikiPageLength
4745
foaf:isPrimaryTopicOf
wikipedia-en:K-convex_function
Subject Item
wikipedia-en:K-convex_function
foaf:primaryTopic
dbr:K-convex_function