This HTML5 document contains 65 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n7http://www.hvks.com/Numerical/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n11http://portal.acm.org/
n21https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n18https://www.jstor.org/stable/
freebasehttp://rdf.freebase.com/ns/
n10http://linkinghub.elsevier.com/retrieve/pii/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
n19https://github.com/sweeneychris/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Root-finding_algorithms
dbo:wikiPageWikiLink
dbr:Jenkins–Traub_algorithm
Subject Item
dbr:Michael_Jenkins
dbo:wikiPageWikiLink
dbr:Jenkins–Traub_algorithm
Subject Item
dbr:Jenkins-Traub_algorithm
dbo:wikiPageWikiLink
dbr:Jenkins–Traub_algorithm
dbo:wikiPageRedirects
dbr:Jenkins–Traub_algorithm
Subject Item
dbr:List_of_numerical_analysis_topics
dbo:wikiPageWikiLink
dbr:Jenkins–Traub_algorithm
Subject Item
dbr:Deflation_(disambiguation)
dbo:wikiPageWikiLink
dbr:Jenkins–Traub_algorithm
Subject Item
dbr:Jenkins–Traub_algorithm
rdf:type
yago:Rule105846932 yago:Algorithm105847438 yago:WikicatRoot-findingAlgorithms yago:PsychologicalFeature100023100 yago:Activity100407535 yago:Procedure101023820 yago:YagoPermanentlyLocatedEntity yago:Event100029378 yago:Act100030358 yago:Abstraction100002137
rdfs:label
Jenkins–Traub algorithm
rdfs:comment
The Jenkins–Traub algorithm for polynomial zeros is a fast globally convergent iterative polynomial root-finding method published in 1970 by and Joseph F. Traub. They gave two variants, one for general polynomials with complex coefficients, commonly known as the "CPOLY" algorithm, and a more complicated variant for the special case of polynomials with real coefficients, commonly known as the "RPOLY" algorithm. The latter is "practically a standard in black-box polynomial root-finders". This article describes the complex variant. Given a polynomial P,
dcterms:subject
dbc:Root-finding_algorithms dbc:Numerical_analysis
dbo:wikiPageID
12106314
dbo:wikiPageRevisionID
1058459263
dbo:wikiPageWikiLink
dbr:Ruffini_rule dbr:Golden_ratio dbr:Newton–Raphson_iteration dbr:Inverse_power_iteration dbr:Rate_of_convergence dbc:Root-finding_algorithms dbr:Newton's_method dbr:Root-finding_algorithms dbr:Horner_scheme dbr:Philip_Rabinowitz_(mathematician) dbr:James_H._Wilkinson dbr:Polynomial dbr:Joseph_F_Traub dbc:Numerical_analysis dbr:Companion_matrix dbr:Michael_A._Jenkins dbr:Rational_functions dbr:Joseph_F._Traub
dbo:wikiPageExternalLink
n7:winsolve.html n10:0024379571900358 n11:citation.cfm%3Fid=361262&coll=portal&dl=ACM n11:citation.cfm%3Fid=355643&coll=ACM&dl=ACM n18:2949376 n19:RpolyPlusPlus
owl:sameAs
freebase:m.02vq0xw wikidata:Q6177639 n21:4oFwL
dbp:wikiPageUsesTemplate
dbt:Root-finding_algorithms dbt:Reflist dbt:Who
dbo:abstract
The Jenkins–Traub algorithm for polynomial zeros is a fast globally convergent iterative polynomial root-finding method published in 1970 by and Joseph F. Traub. They gave two variants, one for general polynomials with complex coefficients, commonly known as the "CPOLY" algorithm, and a more complicated variant for the special case of polynomials with real coefficients, commonly known as the "RPOLY" algorithm. The latter is "practically a standard in black-box polynomial root-finders". This article describes the complex variant. Given a polynomial P, with complex coefficients it computes approximations to the n zeros of P(z), one at a time in roughly increasing order of magnitude. After each root is computed, its linear factor is removed from the polynomial. Using this deflation guarantees that each root is computed only once and that all roots are found. The real variant follows the same pattern, but computes two roots at a time, either two real roots or a pair of conjugate complex roots. By avoiding complex arithmetic, the real variant can be faster (by a factor of 4) than the complex variant. The Jenkins–Traub algorithm has stimulated considerable research on theory and software for methods of this type.
prov:wasDerivedFrom
wikipedia-en:Jenkins–Traub_algorithm?oldid=1058459263&ns=0
dbo:wikiPageLength
18630
foaf:isPrimaryTopicOf
wikipedia-en:Jenkins–Traub_algorithm
Subject Item
dbr:Laguerre's_method
dbo:wikiPageWikiLink
dbr:Jenkins–Traub_algorithm
Subject Item
dbr:Nial
dbo:wikiPageWikiLink
dbr:Jenkins–Traub_algorithm
Subject Item
dbr:Jenkins-Traub_Algorithm_for_Polynomial_Zeros
dbo:wikiPageWikiLink
dbr:Jenkins–Traub_algorithm
dbo:wikiPageRedirects
dbr:Jenkins–Traub_algorithm
Subject Item
dbr:Jenkins-Traub_method
dbo:wikiPageWikiLink
dbr:Jenkins–Traub_algorithm
dbo:wikiPageRedirects
dbr:Jenkins–Traub_algorithm
Subject Item
dbr:Jenkins–Traub_method
dbo:wikiPageWikiLink
dbr:Jenkins–Traub_algorithm
dbo:wikiPageRedirects
dbr:Jenkins–Traub_algorithm
Subject Item
wikipedia-en:Jenkins–Traub_algorithm
foaf:primaryTopic
dbr:Jenkins–Traub_algorithm