This HTML5 document contains 29 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n12https://global.dbpedia.org/id/
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Itō
dbo:wikiPageWikiLink
dbr:Itoh–Tsujii_inversion_algorithm
Subject Item
dbr:Itoh-Tsujii_inversion_algorithm
dbo:wikiPageWikiLink
dbr:Itoh–Tsujii_inversion_algorithm
dbo:wikiPageRedirects
dbr:Itoh–Tsujii_inversion_algorithm
Subject Item
dbr:Itoh–Tsujii_inversion_algorithm
rdfs:label
Itoh–Tsujii inversion algorithm
rdfs:comment
The Itoh–Tsujii inversion algorithm is used to invert elements in a finite field. It was introduced in 1988, first over GF(2m) using the normal basis representation of elements, however, the algorithm is generic and can be used for other bases, such as the polynomial basis. It can also be used in any finite field GF(pm). The algorithm is as follows: Input: A ∈ GF(pm)Output: A−1 1. * r ← (pm − 1)/(p − 1) 2. * compute Ar − 1 in GF(pm) 3. * compute Ar = Ar − 1 · A 4. * compute (Ar)−1 in GF(p) 5. * compute A−1 = (Ar)−1 · Ar −1 6. * return A−1
dcterms:subject
dbc:Finite_fields dbc:Computational_number_theory
dbo:wikiPageID
1180190
dbo:wikiPageRevisionID
1063675646
dbo:wikiPageWikiLink
dbc:Computational_number_theory dbr:Polynomial_basis dbr:Finite_field_arithmetic dbr:Normal_basis dbc:Finite_fields dbr:Finite_field
owl:sameAs
wikidata:Q17092776 n12:f8v7
dbo:abstract
The Itoh–Tsujii inversion algorithm is used to invert elements in a finite field. It was introduced in 1988, first over GF(2m) using the normal basis representation of elements, however, the algorithm is generic and can be used for other bases, such as the polynomial basis. It can also be used in any finite field GF(pm). The algorithm is as follows: Input: A ∈ GF(pm)Output: A−1 1. * r ← (pm − 1)/(p − 1) 2. * compute Ar − 1 in GF(pm) 3. * compute Ar = Ar − 1 · A 4. * compute (Ar)−1 in GF(p) 5. * compute A−1 = (Ar)−1 · Ar −1 6. * return A−1 This algorithm is fast because steps 3 and 5 both involve operations in the subfield GF(p). Similarly, if a small value of p is used, a lookup table can be used for inversion in step 4. The majority of time spent in this algorithm is in step 2, the first exponentiation. This is one reason why this algorithm is well suited for the normal basis, since squaring and exponentiation are relatively easy in that basis.
prov:wasDerivedFrom
wikipedia-en:Itoh–Tsujii_inversion_algorithm?oldid=1063675646&ns=0
dbo:wikiPageLength
1877
foaf:isPrimaryTopicOf
wikipedia-en:Itoh–Tsujii_inversion_algorithm
Subject Item
dbr:Finite_field_arithmetic
dbo:wikiPageWikiLink
dbr:Itoh–Tsujii_inversion_algorithm
Subject Item
dbr:Itoh-Tsujii
dbo:wikiPageWikiLink
dbr:Itoh–Tsujii_inversion_algorithm
dbo:wikiPageRedirects
dbr:Itoh–Tsujii_inversion_algorithm
Subject Item
dbr:Itoh-Tsujii_algorithm
dbo:wikiPageWikiLink
dbr:Itoh–Tsujii_inversion_algorithm
dbo:wikiPageRedirects
dbr:Itoh–Tsujii_inversion_algorithm
Subject Item
dbr:Itoh-Tsujii_inversion
dbo:wikiPageWikiLink
dbr:Itoh–Tsujii_inversion_algorithm
dbo:wikiPageRedirects
dbr:Itoh–Tsujii_inversion_algorithm
Subject Item
wikipedia-en:Itoh–Tsujii_inversion_algorithm
foaf:primaryTopic
dbr:Itoh–Tsujii_inversion_algorithm