This HTML5 document contains 82 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
n14http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n7https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n4http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:DNA-functionalized_quantum_dots
dbo:wikiPageWikiLink
dbr:Hydrogel_encapsulation_of_quantum_dots
Subject Item
dbr:Quantum_dot
dbo:wikiPageWikiLink
dbr:Hydrogel_encapsulation_of_quantum_dots
Subject Item
dbr:Hydrogel_encapsulation_of_quantum_dots
rdfs:label
Hydrogel encapsulation of quantum dots
rdfs:comment
The behavior of quantum dots (QDs) in solution and their interaction with other surfaces is of great importance to biological and industrial applications, such as optical displays, animal tagging, anti-counterfeiting dyes and paints, chemical sensing, and fluorescent tagging. However, unmodified quantum dots tend to be hydrophobic, which precludes their use in stable, water-based colloids. Furthermore, because the ratio of surface area to volume in a quantum dot is much higher than for larger particles, the thermodynamic free energy associated with dangling bonds on the surface is sufficient to impede the quantum confinement of excitons. Once solubilized by encapsulation in either a hydrophobic interior micelle or a hydrophilic exterior micelle, the QDs can be successfully introduced into
foaf:depiction
n4:PEG_Micelle.svg n4:Rf-PEG2.png n4:Particle_Diffusivity_vs._Particle_Radius_at_25°C.svg n4:Rf-PEG_Petal.svg n4:Micelle_Cluster.svg
dcterms:subject
dbc:Surface_science dbc:Quantum_dots
dbo:wikiPageID
39619984
dbo:wikiPageRevisionID
1104231779
dbo:wikiPageWikiLink
dbr:Cole-Cole_equation dbr:Hydrophobe dbr:Entropic_force dbr:Quantum_dot dbr:Surfactants dbr:Krafft_temperature dbr:Biosensor dbr:Fluorescent_tag dbr:Molecular_mass dbr:Hydrophobic dbr:Elasticity_(physics) dbr:Detergent dbr:Thermodynamics_of_micellization dbr:Stress_relaxation dbr:Rheology dbr:Viscosity dbr:Semiconductor dbr:Surface_plasmon_resonance dbr:Thermodynamic_free_energy dbr:Superabsorbent_polymer dbr:Hyperthermia_therapy dbr:Dangling_bonds dbr:Colloids dbr:Animal_migration_tracking dbr:CdSe dbr:Critical_micelle_concentration dbr:Polyethylene_glycol dbr:Quantum_confinement n14:PEG_Micelle.svg n14:Rf-PEG_Petal.svg dbr:Molecular_encapsulation dbr:Cadmium dbr:Cytotoxicity n14:Micelle_Cluster.svg dbr:Spinal_fluid dbr:In_vivo dbr:Carbon dbr:Cole–Cole_equation dbr:Hydrophobicity dbc:Surface_science n14:Particle_Diffusivity_vs._Particle_Radius_at_25°C.svg dbr:Excitons dbr:Fluorescence dbr:Dalton_(unit) dbc:Quantum_dots dbr:Hydrophilic dbr:Maxwell_material dbr:Quantum_dots dbr:Solubilized dbr:Micelle dbr:Mass_diffusivity dbr:Boltzmann_constant dbr:Hydrogel dbr:Sonicator dbr:Stokes–Einstein_equation dbr:Necrosis
owl:sameAs
n7:g96a wikidata:Q17157223 freebase:m.0vzvd2w
dbp:wikiPageUsesTemplate
dbt:Wide_image
dbo:thumbnail
n4:Rf-PEG2.png?width=300
dbo:abstract
The behavior of quantum dots (QDs) in solution and their interaction with other surfaces is of great importance to biological and industrial applications, such as optical displays, animal tagging, anti-counterfeiting dyes and paints, chemical sensing, and fluorescent tagging. However, unmodified quantum dots tend to be hydrophobic, which precludes their use in stable, water-based colloids. Furthermore, because the ratio of surface area to volume in a quantum dot is much higher than for larger particles, the thermodynamic free energy associated with dangling bonds on the surface is sufficient to impede the quantum confinement of excitons. Once solubilized by encapsulation in either a hydrophobic interior micelle or a hydrophilic exterior micelle, the QDs can be successfully introduced into an aqueous medium, in which they form an extended hydrogel network. In this form, quantum dots can be utilized in several applications that benefit from their unique properties, such as medical imaging and thermal destruction of malignant cancers.
prov:wasDerivedFrom
wikipedia-en:Hydrogel_encapsulation_of_quantum_dots?oldid=1104231779&ns=0
dbo:wikiPageLength
17815
foaf:isPrimaryTopicOf
wikipedia-en:Hydrogel_encapsulation_of_quantum_dots
Subject Item
dbr:Nanosponges
dbo:wikiPageWikiLink
dbr:Hydrogel_encapsulation_of_quantum_dots
Subject Item
dbr:Hydrogel_Encapsulation_of_Quantum_Dots
dbo:wikiPageWikiLink
dbr:Hydrogel_encapsulation_of_quantum_dots
dbo:wikiPageRedirects
dbr:Hydrogel_encapsulation_of_quantum_dots
Subject Item
wikipedia-en:Hydrogel_encapsulation_of_quantum_dots
foaf:primaryTopic
dbr:Hydrogel_encapsulation_of_quantum_dots