This HTML5 document contains 70 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n13https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
dbpedia-fahttp://fa.dbpedia.org/resource/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Latent_Dirichlet_allocation
dbo:wikiPageWikiLink
dbr:Hierarchical_Dirichlet_process
Subject Item
dbr:Dirichlet_process
dbo:wikiPageWikiLink
dbr:Hierarchical_Dirichlet_process
Subject Item
dbr:List_of_RNA-Seq_bioinformatics_tools
dbo:wikiPageWikiLink
dbr:Hierarchical_Dirichlet_process
Subject Item
dbr:List_of_things_named_after_Peter_Gustav_Lejeune_Dirichlet
dbo:wikiPageWikiLink
dbr:Hierarchical_Dirichlet_process
Subject Item
dbr:HDP
dbo:wikiPageWikiLink
dbr:Hierarchical_Dirichlet_process
dbo:wikiPageDisambiguates
dbr:Hierarchical_Dirichlet_process
Subject Item
dbr:Hierarchical_Dirichlet_process
rdf:type
yago:PsychologicalFeature100023100 yago:Ability105616246 yago:Know-how105616786 dbo:ProgrammingLanguage yago:Model105890249 yago:Hypothesis105888929 yago:WikicatNon-parametricBayesianMethods yago:Cognition100023271 yago:WikicatStochasticProcesses yago:Abstraction100002137 yago:Content105809192 yago:Method105660268 yago:Concept105835747 yago:StochasticProcess113561896 yago:Idea105833840
rdfs:label
Hierarchical Dirichlet process
rdfs:comment
In statistics and machine learning, the hierarchical Dirichlet process (HDP) is a nonparametric Bayesian approach to clustering grouped data. It uses a Dirichlet process for each group of data, with the Dirichlet processes for all groups sharing a base distribution which is itself drawn from a Dirichlet process. This method allows groups to share statistical strength via sharing of clusters across groups. The base distribution being drawn from a Dirichlet process is important, because draws from a Dirichlet process are atomic probability measures, and the atoms will appear in all group-level Dirichlet processes. Since each atom corresponds to a cluster, clusters are shared across all groups. It was developed by Yee Whye Teh, Michael I. Jordan, and David Blei and published in the Journal o
dcterms:subject
dbc:Stochastic_processes dbc:Nonparametric_Bayesian_statistics
dbo:wikiPageID
34292221
dbo:wikiPageRevisionID
1100589533
dbo:wikiPageWikiLink
dbr:Statistics dbr:Gamma_process dbc:Nonparametric_Bayesian_statistics dbr:Hidden_Markov_model dbc:Stochastic_processes dbr:Bayesian_probability dbr:Journal_of_the_American_Statistical_Association dbr:Topic_model dbr:Matthew_J._Beal dbr:Grouped_data dbr:Hierarchical_Pitman-Yor_process dbr:Chinese_Restaurant_Process dbr:Latent_Dirichlet_allocation dbr:Pitman-Yor_process dbr:David_Blei dbr:Sequence_memoizer dbr:Infinite_hidden_Markov_model dbr:Michael_I._Jordan dbr:Machine_learning dbr:Non-parametric_statistics dbr:Dirichlet_process dbr:Yee_Whye_Teh
owl:sameAs
freebase:m.0hzrtkr n13:4mRpf wikidata:Q5753066 dbpedia-fa:فرایند_دیریکله_سلسله‌مراتبی yago-res:Hierarchical_Dirichlet_process
dbp:wikiPageUsesTemplate
dbt:More_citations_needed dbt:Scholia dbt:Multiple_issues dbt:Primary_sources
dbo:abstract
In statistics and machine learning, the hierarchical Dirichlet process (HDP) is a nonparametric Bayesian approach to clustering grouped data. It uses a Dirichlet process for each group of data, with the Dirichlet processes for all groups sharing a base distribution which is itself drawn from a Dirichlet process. This method allows groups to share statistical strength via sharing of clusters across groups. The base distribution being drawn from a Dirichlet process is important, because draws from a Dirichlet process are atomic probability measures, and the atoms will appear in all group-level Dirichlet processes. Since each atom corresponds to a cluster, clusters are shared across all groups. It was developed by Yee Whye Teh, Michael I. Jordan, and David Blei and published in the Journal of the American Statistical Association in 2006, as a formalization and generalization of the published in 2002.
gold:hypernym
dbr:Approach
prov:wasDerivedFrom
wikipedia-en:Hierarchical_Dirichlet_process?oldid=1100589533&ns=0
dbo:wikiPageLength
8517
foaf:isPrimaryTopicOf
wikipedia-en:Hierarchical_Dirichlet_process
Subject Item
dbr:Time-series_segmentation
dbo:wikiPageWikiLink
dbr:Hierarchical_Dirichlet_process
Subject Item
dbr:Topic_model
dbo:wikiPageWikiLink
dbr:Hierarchical_Dirichlet_process
Subject Item
dbr:Types_of_artificial_neural_networks
dbo:wikiPageWikiLink
dbr:Hierarchical_Dirichlet_process
Subject Item
dbr:Yee_Whye_Teh
dbo:wikiPageWikiLink
dbr:Hierarchical_Dirichlet_process
dbp:knownFor
dbr:Hierarchical_Dirichlet_process
dbo:knownFor
dbr:Hierarchical_Dirichlet_process
Subject Item
wikipedia-en:Hierarchical_Dirichlet_process
foaf:primaryTopic
dbr:Hierarchical_Dirichlet_process