This HTML5 document contains 43 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n6https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
dbpedia-fahttp://fa.dbpedia.org/resource/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
provhttp://www.w3.org/ns/prov#
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Proof_of_impossibility
dbo:wikiPageWikiLink
dbr:Greibach's_theorem
Subject Item
dbr:Context-free_grammar
dbo:wikiPageWikiLink
dbr:Greibach's_theorem
Subject Item
dbr:Greibach's_theorem
rdf:type
yago:Communication100033020 yago:WikicatFormalLanguages yago:Abstraction100002137 yago:Language106282651
rdfs:label
Greibach's theorem
rdfs:comment
In theoretical computer science, in particular in formal language theory, Greibach's theorem states that certain properties of formal language classes are undecidable. It is named after the computer scientist Sheila Greibach, who first proved it in 1963.
dcterms:subject
dbc:Formal_languages
dbo:wikiPageID
42138836
dbo:wikiPageRevisionID
1059754317
dbo:wikiPageWikiLink
dbr:Context-free_grammar dbr:Sheila_Greibach dbr:Formal_language dbr:Finite-state_machine dbr:Ambiguous_grammar dbr:Formal_grammar dbr:Undecidable_problem dbr:String_(formal_languages) dbr:Theoretical_computer_science dbr:Context-sensitive_grammar dbr:Formal_language_theory dbr:Regular_grammar dbr:Context-free_language dbr:Kleene_star dbr:String_concatenation dbr:Regular_language dbc:Formal_languages dbr:Quotient_of_a_formal_language
owl:sameAs
wikidata:Q17019301 n6:f9aX dbpedia-fa:نظریه_گریباخ yago-res:Greibach's_theorem freebase:m.0_xbrv6
dbp:wikiPageUsesTemplate
dbt:Reflist
dbo:abstract
In theoretical computer science, in particular in formal language theory, Greibach's theorem states that certain properties of formal language classes are undecidable. It is named after the computer scientist Sheila Greibach, who first proved it in 1963.
prov:wasDerivedFrom
wikipedia-en:Greibach's_theorem?oldid=1059754317&ns=0
dbo:wikiPageLength
7871
foaf:isPrimaryTopicOf
wikipedia-en:Greibach's_theorem
Subject Item
dbr:Sheila_Greibach
dbo:wikiPageWikiLink
dbr:Greibach's_theorem
dbp:knownFor
dbr:Greibach's_theorem
dbo:knownFor
dbr:Greibach's_theorem
Subject Item
wikipedia-en:Greibach's_theorem
foaf:primaryTopic
dbr:Greibach's_theorem