This HTML5 document contains 46 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n12https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
dbpedia-jahttp://ja.dbpedia.org/resource/

Statements

Subject Item
dbr:Eleny_Ionel
dbo:wikiPageWikiLink
dbr:Gopakumar–Vafa_invariant
Subject Item
dbr:Cumrun_Vafa
dbo:wikiPageWikiLink
dbr:Gopakumar–Vafa_invariant
dbp:knownFor
dbr:Gopakumar–Vafa_invariant
dbo:knownFor
dbr:Gopakumar–Vafa_invariant
Subject Item
dbr:Gopakumar–Vafa_invariant
rdfs:label
ゴパクマー・ヴァッファ不変量 Gopakumar–Vafa invariant
rdfs:comment
In theoretical physics, Rajesh Gopakumar and Cumrun Vafa introduced in a series of papers new topological invariants, called Gopakumar–Vafa invariants, that represent the number of BPS states on a Calabi–Yau 3-fold. They lead to the following generating function for the Gromov–Witten invariants on a Calabi–Yau 3-fold M: , where 理論物理学では、 (Rajesh Gopakumar) とカムラン・ヴァッファ (Cumrun Vafa) は、3次元カラビ・ヤウ多様体のBPS状態(BPS state)の数を表す、新しい位相不変量、ゴパクマー・ヴァッファ不変量 (ゴパクマー・ヴァッファふへんりょう、Gopakumar-Vafa invariant) を、一連の論文で導入した。(、 を参照。また、、 も参照。)彼らは、3-次元カラビ・ヤウ多様体 M のグロモフ・ウィッテン不変量の母函数となる次の公式を導いた。 ここに、 はグロモフ・ウィッテン不変量を、 は種数 g を持つ (pseudoholomorphic curve) の数を、 はBPS状態の数を表す。
dcterms:subject
dbc:Quantum_field_theory dbc:String_theory dbc:Algebraic_geometry
dbo:wikiPageID
44541887
dbo:wikiPageRevisionID
1100573865
dbo:wikiPageWikiLink
dbr:Annals_of_Mathematics dbr:Calabi–Yau_manifold dbr:Cumrun_Vafa dbr:BPS_state dbr:Pseudoholomorphic_curve dbr:Gromov–Witten_invariant dbr:Rajesh_Gopakumar dbc:Quantum_field_theory dbc:Algebraic_geometry dbc:String_theory dbr:Theoretical_physics dbr:Topological_quantum_field_theory dbr:Genus_(mathematics)
owl:sameAs
wikidata:Q18579343 dbpedia-ja:ゴパクマー・ヴァッファ不変量 n12:nrua freebase:m.012cqjxp
dbp:wikiPageUsesTemplate
dbt:Citation dbt:Reflist dbt:Short_description dbt:Quantum-stub
dbo:abstract
In theoretical physics, Rajesh Gopakumar and Cumrun Vafa introduced in a series of papers new topological invariants, called Gopakumar–Vafa invariants, that represent the number of BPS states on a Calabi–Yau 3-fold. They lead to the following generating function for the Gromov–Witten invariants on a Calabi–Yau 3-fold M: , where * is the class of pseudoholomorphic curves with genus g, * is the topological string coupling, * with the Kähler parameter of the curve class , * are the Gromov–Witten invariants of curve class at genus , * are the number of BPS states (the Gopakumar–Vafa invariants) of curve class at genus . 理論物理学では、 (Rajesh Gopakumar) とカムラン・ヴァッファ (Cumrun Vafa) は、3次元カラビ・ヤウ多様体のBPS状態(BPS state)の数を表す、新しい位相不変量、ゴパクマー・ヴァッファ不変量 (ゴパクマー・ヴァッファふへんりょう、Gopakumar-Vafa invariant) を、一連の論文で導入した。(、 を参照。また、、 も参照。)彼らは、3-次元カラビ・ヤウ多様体 M のグロモフ・ウィッテン不変量の母函数となる次の公式を導いた。 ここに、 はグロモフ・ウィッテン不変量を、 は種数 g を持つ (pseudoholomorphic curve) の数を、 はBPS状態の数を表す。
prov:wasDerivedFrom
wikipedia-en:Gopakumar–Vafa_invariant?oldid=1100573865&ns=0
dbo:wikiPageLength
3503
foaf:isPrimaryTopicOf
wikipedia-en:Gopakumar–Vafa_invariant
Subject Item
dbr:Gopakumar-Vafa_invariant
dbo:wikiPageWikiLink
dbr:Gopakumar–Vafa_invariant
dbo:wikiPageRedirects
dbr:Gopakumar–Vafa_invariant
Subject Item
dbr:Gromov–Witten_invariant
dbo:wikiPageWikiLink
dbr:Gopakumar–Vafa_invariant
Subject Item
dbr:Rajesh_Gopakumar
dbo:wikiPageWikiLink
dbr:Gopakumar–Vafa_invariant
dbp:knownFor
dbr:Gopakumar–Vafa_invariant
dbo:knownFor
dbr:Gopakumar–Vafa_invariant
Subject Item
wikipedia-en:Gopakumar–Vafa_invariant
foaf:primaryTopic
dbr:Gopakumar–Vafa_invariant