This HTML5 document contains 58 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n8https://global.dbpedia.org/id/
dbpedia-hehttp://he.dbpedia.org/resource/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
dbpedia-svhttp://sv.dbpedia.org/resource/
freebasehttp://rdf.freebase.com/ns/
n19http://www.math.washington.edu/~smith/Research/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
n18http://math.mit.edu/~etingof/

Statements

Subject Item
dbr:Almost_commutative_ring
dbo:wikiPageWikiLink
dbr:Gelfand–Kirillov_dimension
Subject Item
dbr:Uzi_Vishne
dbo:wikiPageWikiLink
dbr:Gelfand–Kirillov_dimension
Subject Item
dbr:Elliptic_algebra
dbo:wikiPageWikiLink
dbr:Gelfand–Kirillov_dimension
Subject Item
dbr:Gelfand–Kirillov_dimension
rdfs:label
Gelfand–Kirillov dimension Gelfand–Kirillovdimension
rdfs:comment
In algebra, the Gelfand–Kirillov dimension (or GK dimension) of a right module M over a k-algebra A is: where the supremum is taken over all finite-dimensional subspaces and . An algebra is said to have polynomial growth if its Gelfand–Kirillov dimension is finite. Inom matematiken är Gelfand–Kirillodimensionen (eller GK-dimensionen) av en högermodul M över en k-algebra A där sup tas över alla ändligdimensionella delrum och . En algebra säges ha polynomisk tillväxt om dess Gelfand–Kirillovdimension är ändlig.
dcterms:subject
dbc:Algebra dbc:Dimension
dbo:wikiPageID
35987396
dbo:wikiPageRevisionID
1021878127
dbo:wikiPageWikiLink
dbc:Algebra dbc:Dimension dbr:Linear_subspace dbr:Supremum dbr:K-algebra dbr:Commutative_algebra_(structure) dbr:Krull_dimension dbr:Polynomial_ring dbr:Proceedings_of_the_American_Mathematical_Society dbr:Short_exact_sequence dbr:Real_number dbr:Hilbert_polynomial dbr:D-module dbr:Algebra dbr:Field_of_fractions dbr:Weyl_algebra dbr:Geometric_Langlands_program dbr:Right_module dbr:Field_(mathematics)
dbo:wikiPageExternalLink
n18:artinnotes.pdf%7Cyear=1999%7Clocation=Chapter n19:GK-rmk.pdf
owl:sameAs
n8:4kkLr wikidata:Q5530427 dbpedia-he:ממד_גלפנד-קירילוב dbpedia-sv:Gelfand–Kirillovdimension freebase:m.0j_5jgv
dbp:wikiPageUsesTemplate
dbt:Cite_journal dbt:Cite_web dbt:Reflist dbt:Algebra-stub
dbo:abstract
Inom matematiken är Gelfand–Kirillodimensionen (eller GK-dimensionen) av en högermodul M över en k-algebra A där sup tas över alla ändligdimensionella delrum och . En algebra säges ha polynomisk tillväxt om dess Gelfand–Kirillovdimension är ändlig. In algebra, the Gelfand–Kirillov dimension (or GK dimension) of a right module M over a k-algebra A is: where the supremum is taken over all finite-dimensional subspaces and . An algebra is said to have polynomial growth if its Gelfand–Kirillov dimension is finite.
prov:wasDerivedFrom
wikipedia-en:Gelfand–Kirillov_dimension?oldid=1021878127&ns=0
dbo:wikiPageLength
2528
foaf:isPrimaryTopicOf
wikipedia-en:Gelfand–Kirillov_dimension
Subject Item
dbr:Gelfand-Kirillov_dimension
dbo:wikiPageWikiLink
dbr:Gelfand–Kirillov_dimension
dbo:wikiPageRedirects
dbr:Gelfand–Kirillov_dimension
Subject Item
dbr:Krull_dimension
dbo:wikiPageWikiLink
dbr:Gelfand–Kirillov_dimension
Subject Item
dbr:Agata_Smoktunowicz
dbo:wikiPageWikiLink
dbr:Gelfand–Kirillov_dimension
Subject Item
dbr:Israel_Gelfand
dbo:wikiPageWikiLink
dbr:Gelfand–Kirillov_dimension
Subject Item
dbr:Dimension_theory_(algebra)
dbo:wikiPageWikiLink
dbr:Gelfand–Kirillov_dimension
Subject Item
dbr:Sklyanin_algebra
dbo:wikiPageWikiLink
dbr:Gelfand–Kirillov_dimension
Subject Item
dbr:GK_dimension
dbo:wikiPageWikiLink
dbr:Gelfand–Kirillov_dimension
dbo:wikiPageRedirects
dbr:Gelfand–Kirillov_dimension
Subject Item
dbr:Gelfand-Kirillov_Dimension
dbo:wikiPageWikiLink
dbr:Gelfand–Kirillov_dimension
dbo:wikiPageRedirects
dbr:Gelfand–Kirillov_dimension
Subject Item
wikipedia-en:Gelfand–Kirillov_dimension
foaf:primaryTopic
dbr:Gelfand–Kirillov_dimension