This HTML5 document contains 59 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
n10http://www.answers.com/topic/
foafhttp://xmlns.com/foaf/0.1/
n18https://global.dbpedia.org/id/
dbpedia-hehttp://he.dbpedia.org/resource/
yagohttp://dbpedia.org/class/yago/
dbpedia-ruhttp://ru.dbpedia.org/resource/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
dbpedia-rohttp://ro.dbpedia.org/resource/

Statements

Subject Item
dbr:List_of_analyses_of_categorical_data
dbo:wikiPageWikiLink
dbr:Gauss's_inequality
Subject Item
dbr:Vysochanskij–Petunin_inequality
dbo:wikiPageWikiLink
dbr:Gauss's_inequality
Subject Item
dbr:List_of_inequalities
dbo:wikiPageWikiLink
dbr:Gauss's_inequality
Subject Item
dbr:Gauss's_inequality
rdf:type
yago:WikicatProbabilisticInequalities owl:Thing yago:Attribute100024264 yago:WikicatInequalities yago:Quality104723816 yago:Abstraction100002137 yago:Inequality104752221 yago:Difference104748836
rdfs:label
Неравенство Гаусса Gauss's inequality
rdfs:comment
В теории вероятностей неравенство Гаусса даёт верхнюю границу вероятности того, что одномодальная случайная величина выходит за пределы интервала с центром в её моде. Пусть X — одномодальная случайная величина с модой m и пусть τ 2 есть математическое ожидание (X − m)2. (τ2 может также быть выражено как (μ − m)2 + σ2, где μ и σ являются средним значением и стандартным отклонением X.) Эта теорема была впервые доказана Гауссом в 1823 году. In probability theory, Gauss's inequality (or the Gauss inequality) gives an upper bound on the probability that a unimodal random variable lies more than any given distance from its mode. Let X be a unimodal random variable with mode m, and let τ 2 be the expected value of (X − m)2. (τ 2 can also be expressed as (μ − m)2 + σ 2, where μ and σ are the mean and standard deviation of X.) Then for any positive value of k, The theorem was first proved by Carl Friedrich Gauss in 1823.
dcterms:subject
dbc:Probabilistic_inequalities
dbo:wikiPageID
22777799
dbo:wikiPageRevisionID
1056929099
dbo:wikiPageWikiLink
dbr:Gauss'_inequality dbr:Mode_(statistics) dbr:Unimodal dbr:Standard_deviation dbr:Concentration_inequality dbr:American_Statistician dbr:Vysochanskiï–Petunin_inequality dbr:Expected_value dbr:Gaussian_isoperimetric_inequality dbr:Carl_Friedrich_Gauss dbr:Probability_theory dbc:Probabilistic_inequalities dbr:Chebyshev's_inequality dbr:Gaussian_correlation_inequality dbr:Random_variable
dbo:wikiPageExternalLink
n10:gauss-inequality
owl:sameAs
yago-res:Gauss's_inequality dbpedia-he:אי-שוויון_גאוס dbpedia-ru:Неравенство_Гаусса freebase:m.05zz_z0 n18:4kDW9 wikidata:Q5527816 dbpedia-ro:Inegalitatea_lui_Gauss
dbp:wikiPageUsesTemplate
dbt:Cite_book dbt:Reflist dbt:Cite_journal dbt:Distinguish
dbo:abstract
In probability theory, Gauss's inequality (or the Gauss inequality) gives an upper bound on the probability that a unimodal random variable lies more than any given distance from its mode. Let X be a unimodal random variable with mode m, and let τ 2 be the expected value of (X − m)2. (τ 2 can also be expressed as (μ − m)2 + σ 2, where μ and σ are the mean and standard deviation of X.) Then for any positive value of k, The theorem was first proved by Carl Friedrich Gauss in 1823. В теории вероятностей неравенство Гаусса даёт верхнюю границу вероятности того, что одномодальная случайная величина выходит за пределы интервала с центром в её моде. Пусть X — одномодальная случайная величина с модой m и пусть τ 2 есть математическое ожидание (X − m)2. (τ2 может также быть выражено как (μ − m)2 + σ2, где μ и σ являются средним значением и стандартным отклонением X.) Эта теорема была впервые доказана Гауссом в 1823 году.
prov:wasDerivedFrom
wikipedia-en:Gauss's_inequality?oldid=1056929099&ns=0
dbo:wikiPageLength
5123
foaf:isPrimaryTopicOf
wikipedia-en:Gauss's_inequality
Subject Item
dbr:List_of_things_named_after_Carl_Friedrich_Gauss
dbo:wikiPageWikiLink
dbr:Gauss's_inequality
Subject Item
dbr:Catalog_of_articles_in_probability_theory
dbo:wikiPageWikiLink
dbr:Gauss's_inequality
Subject Item
dbr:List_of_statistics_articles
dbo:wikiPageWikiLink
dbr:Gauss's_inequality
Subject Item
dbr:Unimodality
dbo:wikiPageWikiLink
dbr:Gauss's_inequality
Subject Item
dbr:Gauss'_inequality
dbo:wikiPageWikiLink
dbr:Gauss's_inequality
dbo:wikiPageRedirects
dbr:Gauss's_inequality
Subject Item
dbr:Gauss_inequality
dbo:wikiPageWikiLink
dbr:Gauss's_inequality
dbo:wikiPageRedirects
dbr:Gauss's_inequality
Subject Item
wikipedia-en:Gauss's_inequality
foaf:primaryTopic
dbr:Gauss's_inequality