This HTML5 document contains 69 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n15https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
dbpedia-arhttp://ar.dbpedia.org/resource/
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Protein_secondary_structure
dbo:wikiPageWikiLink
dbr:GOR_method
Subject Item
dbr:List_of_protein_secondary_structure_prediction_programs
dbo:wikiPageWikiLink
dbr:GOR_method
Subject Item
dbr:Protein_structure_prediction
dbo:wikiPageWikiLink
dbr:GOR_method
Subject Item
dbr:Chou–Fasman_method
dbo:wikiPageWikiLink
dbr:GOR_method
Subject Item
dbr:UGENE
dbo:wikiPageWikiLink
dbr:GOR_method
Subject Item
dbr:GOR_method
rdf:type
yago:Method105660268 yago:Application106570110 yago:Ability105616246 yago:PsychologicalFeature100023100 yago:Program106568978 yago:Writing106359877 yago:Code106355894 yago:Know-how105616786 yago:Cognition100023271 yago:WikicatApplicationsOfBayesianInference yago:WikicatProteinMethods yago:CodingSystem106353757 yago:WrittenCommunication106349220 dbo:Software yago:Communication100033020 yago:Abstraction100002137 yago:Software106566077
rdfs:label
GOR method طريقة GOR
rdfs:comment
The GOR method (short for Garnier–Osguthorpe–Robson) is an information theory-based method for the prediction of secondary structures in proteins. It was developed in the late 1970s shortly after the simpler Chou–Fasman method. Like Chou–Fasman, the GOR method is based on probability parameters derived from empirical studies of known protein tertiary structures solved by X-ray crystallography. However, unlike Chou–Fasman, the GOR method takes into account not only the propensities of individual amino acids to form particular secondary structures, but also the conditional probability of the amino acid to form a secondary structure given that its immediate neighbors have already formed that structure. The method is therefore essentially Bayesian in its analysis. هي طريقة قائمة على نظرية المعلومات للتنبؤ بالهياكل الثانوية في البروتينات. تم تطويره في أواخر السبعينيات بعد فترة قصيرة من طريقة تشو فاسمان الأكثر بساطة. مثل Chou-Fasman ، تعتمد طريقة GOR على معايير الاحتمالية المستمدة من الدراسات التجريبية للهياكل الثلاثية المعروفة بالبروتين والتي تم حلها بواسطة بلورات الأشعة السينية. ومع ذلك، على عكس Chou-Fasman ، تأخذ طريقة GOR في الاعتبار ليس فقط ميول الأحماض الأمينية الفردية لتشكيل هياكل ثانوية معينة، ولكن أيضًا الاحتمال الشرطي للحمض الأميني في تكوين بنية ثانوية بالنظر إلى أن جيرانه المباشرين قد شكلوا بالفعل بناء. وبالتالي فإن الطريقة هي أساس بايزي في تحليلها.تقوم طريقة GOR بتحليل التسلسلات للتنبؤ بالحلزون ألفا، أو ورقة بيتا، أو الدوران، أو الهيكل العشوائي للملف الثانوي في كل موقف بناءً على نوافذ تسلسل الحمض الأميني 17. تضمن الوصف الأصلي للطريقة أربع
dcterms:subject
dbc:Applications_of_Bayesian_inference dbc:Bioinformatics dbc:Protein_methods
dbo:wikiPageID
8732281
dbo:wikiPageRevisionID
1111042760
dbo:wikiPageWikiLink
dbr:Tertiary_structure dbr:X-ray_crystallography dbc:Bioinformatics dbr:Probability dbr:Scoring_matrix dbr:Chou–Fasman_method dbr:List_of_protein_structure_prediction_software dbr:Secondary_structure dbr:Amino_acid dbr:Protein dbr:Turn_(biochemistry) dbr:Log-odds dbr:Protein_structure_prediction dbr:Bayesian_analysis dbr:Alpha_helix dbr:Conditional_probability dbc:Protein_methods dbr:Information_theory dbr:Random_coil dbc:Applications_of_Bayesian_inference dbr:Beta_sheet
owl:sameAs
wikidata:Q5514100 yago-res:GOR_method n15:4jpy7 dbpedia-ar:طريقة_GOR freebase:m.027gpqn
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Short_description
dbo:abstract
هي طريقة قائمة على نظرية المعلومات للتنبؤ بالهياكل الثانوية في البروتينات. تم تطويره في أواخر السبعينيات بعد فترة قصيرة من طريقة تشو فاسمان الأكثر بساطة. مثل Chou-Fasman ، تعتمد طريقة GOR على معايير الاحتمالية المستمدة من الدراسات التجريبية للهياكل الثلاثية المعروفة بالبروتين والتي تم حلها بواسطة بلورات الأشعة السينية. ومع ذلك، على عكس Chou-Fasman ، تأخذ طريقة GOR في الاعتبار ليس فقط ميول الأحماض الأمينية الفردية لتشكيل هياكل ثانوية معينة، ولكن أيضًا الاحتمال الشرطي للحمض الأميني في تكوين بنية ثانوية بالنظر إلى أن جيرانه المباشرين قد شكلوا بالفعل بناء. وبالتالي فإن الطريقة هي أساس بايزي في تحليلها.تقوم طريقة GOR بتحليل التسلسلات للتنبؤ بالحلزون ألفا، أو ورقة بيتا، أو الدوران، أو الهيكل العشوائي للملف الثانوي في كل موقف بناءً على نوافذ تسلسل الحمض الأميني 17. تضمن الوصف الأصلي للطريقة أربع مصفوفات تسجيل بحجم 17 × 20، حيث تتوافق الأعمدة مع درجة خلاف السجل، مما يعكس احتمال العثور على حمض أميني معين في كل موضع في تسلسل 17 بقايا. تعكس المصفوفات الأربعة احتمالات وجود الأحماض الأمينية المركزية، التاسعة في شكل حلزوني، ورقة، لف، أو ملف. في المراجعات اللاحقة للأسلوب، تم التخلص من مصفوفة الانعطاف بسبب التباين العالي في التتابعات في المناطق المنعطفة (خاصة على مثل هذه النافذة الكبيرة). تم اعتبار الطريقة الأفضل في طلب ما لا يقل عن أربعة وحدات بنائية متجاورة للتسجيل كحلول ألفا لتصنيف المنطقة على أنها حلزونية، واثنين على الأقل من الوحدات المتجاورة في ورقة بيتا.ستندت الرياضيات والخوارزمية لطريقة GOR إلى سلسلة سابقة من الدراسات التي أجراها روبسون وزملاؤه والتي تم الإبلاغ عنها بشكل رئيسي في مجلة البيولوجيا الجزيئية (على سبيل المثال [4]) والمجلة البيوكيميائية (مثل [5]). يصف الأخير التوسعات النظرية للمعلومات من حيث تدابير المعلومات الشرطية. يعكس استخدام كلمة «بسيط» في عنوان ورقة GOR حقيقة أن الأساليب السابقة المذكورة أعلاه قدمت أدلة وتقنيات مخيفة إلى حد ما من خلال كونها غير مألوفة إلى حد ما في علم البروتين في أوائل السبعينيات؛ حتى طرق بايز كانت غير مألوفة ومثيرة للجدل. ومن السمات المهمة لهذه الدراسات المبكرة، التي نجت من طريقة GOR ، معالجة بيانات تسلسل البروتين المتفرق في أوائل سبعينيات القرن الماضي من خلال مقاييس المعلومات المتوقعة. بمعنى أن التوقعات على أساس بايزي تدرس توزيع قيم المعلومات المعقولة بقياس الترددات الفعلية (عدد المشاهدات). يمكن الآن اعتبار مقاييس التوقع الناتجة عن التكامل على هذه التوزيعات وما شابهها مؤلفة من وظائف «غير كاملة» أو وظائف زيتا ممتدة، على سبيل المثال z (s ، التردد المرصود) - z (s ، التردد المتوقع) مع وظيفة زيتا غير كاملة z (s، n) = 1 + (1/2) s + (1/3) s + (1/4) s + .... + (1 / ن) ق. تستخدم طريقة GOR s = 1. أيضًا، في طريقة GOR والأساليب السابقة، التدبير للحالة المخالفة على سبيل المثال تم حل اللولب H ، أي ~ H ، من ذلك بالنسبة لـ H ، وبالمثل بالنسبة للورقة التجريبية، والمنعطفات، والملفوف أو الحلقة. وبالتالي، يمكن اعتبار الطريقة على أنها استخدام تقدير دالة زيتا للاحتمالات التنبؤية للسجل. يمكن أيضًا تطبيق ثابت قرار قابل للتعديل، مما يعني أيضًا اتباع نهج نظرية القرار؛ سمحت طريقة GOR خيار استخدام ثوابت القرار لتحسين التنبؤات لفئات مختلفة من البروتين. كان قياس المعلومات المتوقع المستخدم كأساس لتوسيع المعلومات أقل أهمية بحلول وقت نشر أسلوب GOR لأن بيانات تسلسل البروتين أصبحت أكثر وفرة، على الأقل بالنسبة للمصطلحات التي تم بحثها في ذلك الوقت. ثم، بالنسبة إلى s = 1، يقترب التعبير z (s ، التردد المرصود) - z (s ، التردد المتوقع) من اللوغاريتم الطبيعي لـ (التردد المردد / التردد المتوقع) مع زيادة الترددات. ومع ذلك، يظل هذا المقياس (بما في ذلك استخدام القيم الأخرى لـ s) مهمًا في التطبيقات الأكثر عمومية لاحقًا ذات البيانات عالية الأبعاد، حيث تكون البيانات الخاصة بالمصطلحات الأكثر تعقيدًا في توسيع المعلومات متناثرة بشكل حتمي The GOR method (short for Garnier–Osguthorpe–Robson) is an information theory-based method for the prediction of secondary structures in proteins. It was developed in the late 1970s shortly after the simpler Chou–Fasman method. Like Chou–Fasman, the GOR method is based on probability parameters derived from empirical studies of known protein tertiary structures solved by X-ray crystallography. However, unlike Chou–Fasman, the GOR method takes into account not only the propensities of individual amino acids to form particular secondary structures, but also the conditional probability of the amino acid to form a secondary structure given that its immediate neighbors have already formed that structure. The method is therefore essentially Bayesian in its analysis.
gold:hypernym
dbr:Method
prov:wasDerivedFrom
wikipedia-en:GOR_method?oldid=1111042760&ns=0
dbo:wikiPageLength
6568
foaf:isPrimaryTopicOf
wikipedia-en:GOR_method
Subject Item
dbr:KRBA1
dbo:wikiPageWikiLink
dbr:GOR_method
Subject Item
dbr:Gor_(disambiguation)
dbo:wikiPageWikiLink
dbr:GOR_method
dbo:wikiPageDisambiguates
dbr:GOR_method
Subject Item
wikipedia-en:GOR_method
foaf:primaryTopic
dbr:GOR_method