This HTML5 document contains 62 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n16https://books.google.com/
n6https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Generalized_functional_linear_model
dbo:wikiPageWikiLink
dbr:Functional_principal_component_analysis
Subject Item
dbr:Functional_correlation
dbo:wikiPageWikiLink
dbr:Functional_principal_component_analysis
Subject Item
dbr:Functional_data_analysis
dbo:wikiPageWikiLink
dbr:Functional_principal_component_analysis
Subject Item
dbr:Functional_regression
dbo:wikiPageWikiLink
dbr:Functional_principal_component_analysis
Subject Item
dbr:Functional_additive_models
dbo:wikiPageWikiLink
dbr:Functional_principal_component_analysis
Subject Item
dbr:Functional_principal_component_analysis
rdf:type
yago:Abstraction100002137 dbo:Software yago:Ability105616246 yago:Know-how105616786 yago:StatisticalMethod106020737 yago:WikicatStatisticalMethods yago:Cognition100023271 yago:PsychologicalFeature100023100 yago:Method105660268
rdfs:label
Functional principal component analysis
rdfs:comment
Functional principal component analysis (FPCA) is a statistical method for investigating the dominant modes of variation of functional data. Using this method, a random function is represented in the eigenbasis, which is an orthonormal basis of the Hilbert space L2 that consists of the eigenfunctions of the autocovariance operator. FPCA represents functional data in the most parsimonious way, in the sense that when using a fixed number of basis functions, the eigenfunction basis explains more variation than any other basis expansion. FPCA can be applied for representing random functions, or in functional regression and classification.
dct:subject
dbc:Nonparametric_statistics dbc:Factor_analysis
dbo:wikiPageID
41204236
dbo:wikiPageRevisionID
1052178893
dbo:wikiPageWikiLink
dbr:Interpolation dbr:Longitudinal_data dbr:Factor_analysis dbr:Square-integrable_function dbc:Factor_analysis dbr:Hilbert_space dbr:Spline_smoothing dbr:Stochastic_process dbr:Local_regression dbr:Regularization_(mathematics) dbr:Basis_functions dbr:Modes_of_variation dbr:Covariance_operator dbr:Random_function dbr:Permutation dbr:Dimensionality_reduction dbr:Hilbert–Schmidt_operator dbr:Statistics dbr:Symmetric_matrix dbr:Positive-definite_matrix dbr:Principal_component_analysis dbr:Best_linear_unbiased_prediction dbr:Functional_data_analysis dbr:Karhunen–Loève_theorem dbr:Orthonormality dbc:Nonparametric_statistics dbr:Numerical_integration
dbo:wikiPageExternalLink
n16:books%3Fid=mU3dop5wY_4C%7Cdate=8
owl:sameAs
n6:fJRo freebase:m.0zdtcf_ wikidata:Q17014987
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Cite_book
dbo:abstract
Functional principal component analysis (FPCA) is a statistical method for investigating the dominant modes of variation of functional data. Using this method, a random function is represented in the eigenbasis, which is an orthonormal basis of the Hilbert space L2 that consists of the eigenfunctions of the autocovariance operator. FPCA represents functional data in the most parsimonious way, in the sense that when using a fixed number of basis functions, the eigenfunction basis explains more variation than any other basis expansion. FPCA can be applied for representing random functions, or in functional regression and classification.
gold:hypernym
dbr:Method
prov:wasDerivedFrom
wikipedia-en:Functional_principal_component_analysis?oldid=1052178893&ns=0
dbo:wikiPageLength
14379
foaf:isPrimaryTopicOf
wikipedia-en:Functional_principal_component_analysis
Subject Item
dbr:Principal_component_analysis
dbo:wikiPageWikiLink
dbr:Functional_principal_component_analysis
Subject Item
dbr:Modes_of_variation
dbo:wikiPageWikiLink
dbr:Functional_principal_component_analysis
Subject Item
dbr:Outline_of_machine_learning
dbo:wikiPageWikiLink
dbr:Functional_principal_component_analysis
Subject Item
wikipedia-en:Functional_principal_component_analysis
foaf:primaryTopic
dbr:Functional_principal_component_analysis