This HTML5 document contains 75 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-cahttp://ca.dbpedia.org/resource/
n8http://www.soft-computing.de/
n24https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n19http://behsys.com/mohsen/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbpedia-nlhttp://nl.dbpedia.org/resource/
dbrhttp://dbpedia.org/resource/
dbpedia-jahttp://ja.dbpedia.org/resource/

Statements

Subject Item
dbr:MCACEA
dbo:wikiPageWikiLink
dbr:Fitness_approximation
Subject Item
dbr:Time_series
dbo:wikiPageWikiLink
dbr:Fitness_approximation
Subject Item
dbr:Genetic_programming
dbo:wikiPageWikiLink
dbr:Fitness_approximation
Subject Item
dbr:Genetic_algorithm
dbo:wikiPageWikiLink
dbr:Fitness_approximation
Subject Item
dbr:Crossover_(genetic_algorithm)
dbo:wikiPageWikiLink
dbr:Fitness_approximation
Subject Item
dbr:Function_approximation
dbo:wikiPageWikiLink
dbr:Fitness_approximation
Subject Item
dbr:Surrogate_model
dbo:wikiPageWikiLink
dbr:Fitness_approximation
Subject Item
dbr:Fitness
dbo:wikiPageWikiLink
dbr:Fitness_approximation
dbo:wikiPageDisambiguates
dbr:Fitness_approximation
Subject Item
dbr:Artificial_neural_network
dbo:wikiPageWikiLink
dbr:Fitness_approximation
Subject Item
dbr:Audio_watermark
dbo:wikiPageWikiLink
dbr:Fitness_approximation
Subject Item
dbr:Evolutionary_algorithm
dbo:wikiPageWikiLink
dbr:Fitness_approximation
Subject Item
dbr:Evolutionary_computation
dbo:wikiPageWikiLink
dbr:Fitness_approximation
Subject Item
dbr:Fitness_approximation
rdf:type
yago:Act100030358 yago:WikicatGeneticAlgorithms yago:Algorithm105847438 yago:Activity100407535 yago:PsychologicalFeature100023100 yago:YagoPermanentlyLocatedEntity yago:Event100029378 yago:WikicatEvolutionaryAlgorithms yago:Abstraction100002137 yago:Rule105846932 yago:Procedure101023820 dbo:Software
rdfs:label
Fitness approximation
rdfs:comment
Fitness approximation aims to approximate the objective or fitness functions in evolutionary optimization by building up machine learning models based on data collected from numerical simulations or physical experiments. The machine learning models for fitness approximation are also known as meta-models or surrogates, and evolutionary optimization based on approximated fitness evaluations are also known as surrogate-assisted evolutionary approximation. Fitness approximation in evolutionary optimization can be seen as a sub-area of data-driven evolutionary optimization.
dcterms:subject
dbc:Genetic_algorithms dbc:Evolutionary_algorithms
dbo:wikiPageID
22142854
dbo:wikiPageRevisionID
1094124262
dbo:wikiPageWikiLink
dbr:Artificial_neural_networks dbr:Optimization_problem dbr:Radial_basis_function_network dbr:Fuzzy_logic dbr:Finite_element_method dbc:Genetic_algorithms dbr:Local_optima dbr:Fitness_function dbr:Watermark_detection dbr:Degree_of_a_polynomial dbr:Bayesian_network dbr:Optimization_(mathematics) dbr:Regression_analysis dbr:Multilayer_perceptron dbr:Support_vector_machines dbr:Surrogate_model dbr:Polynomial dbr:Approximation dbr:Digital_watermarking dbc:Evolutionary_algorithms
dbo:wikiPageExternalLink
n8:amec_n.html n8:jin.html n19:Fitness-Approximation-Adaptive-Fuzzy-Fitness-Granulation-Evolutionary-Algorithm.html
owl:sameAs
wikidata:Q16250539 yago-res:Fitness_approximation freebase:m.05p1mdr n24:bmay
dbp:wikiPageUsesTemplate
dbt:No_footnotes dbt:Reflist dbt:Notability dbt:Wiktionary
dbo:wikiPageInterLanguageLink
dbpedia-de:Fitnessfunktion dbpedia-ja:適応度関数 dbpedia-nl:Fitnessfunctie dbpedia-ca:Funció_d'aptitud_(algorisme_genètic)
dbo:abstract
Fitness approximation aims to approximate the objective or fitness functions in evolutionary optimization by building up machine learning models based on data collected from numerical simulations or physical experiments. The machine learning models for fitness approximation are also known as meta-models or surrogates, and evolutionary optimization based on approximated fitness evaluations are also known as surrogate-assisted evolutionary approximation. Fitness approximation in evolutionary optimization can be seen as a sub-area of data-driven evolutionary optimization.
gold:hypernym
dbr:Method
prov:wasDerivedFrom
wikipedia-en:Fitness_approximation?oldid=1094124262&ns=0
dbo:wikiPageLength
5532
foaf:isPrimaryTopicOf
wikipedia-en:Fitness_approximation
Subject Item
dbr:Fitness_function
dbo:wikiPageWikiLink
dbr:Fitness_approximation
Subject Item
dbr:Multilayer_perceptron
dbo:wikiPageWikiLink
dbr:Fitness_approximation
Subject Item
dbr:Outline_of_machine_learning
dbo:wikiPageWikiLink
dbr:Fitness_approximation
Subject Item
wikipedia-en:Fitness_approximation
foaf:primaryTopic
dbr:Fitness_approximation