This HTML5 document contains 37 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n6https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Equivariant_index_theorem
rdf:type
dbo:MeanOfTransportation
rdfs:label
Äquivarianter Indexsatz Equivariant index theorem
rdfs:comment
In differential geometry, the equivariant index theorem, of which there are several variants, computes the (graded) trace of an element of a compact Lie group acting in given setting in terms of the integral over the fixed points of the element. If the element is neutral, then the theorem reduces to the usual index theorem. The classical formula such as the Atiyah–Bott formula is a special case of the theorem. In der Mathematik ist der äquivariante Indexsatz eine von Michael Atiyah, Graeme Segal und Isadore Singer bewiesene Formel für die von Elementen einer mit einem Dirac-Operator kommutierenden Gruppenwirkung, die die Berechnung des äquivarianten Indexes von Dirac-Operatoren aus dem -Geschlecht der Fixpunktmenge und dem äquivarianten Chern-Charakter ermöglicht. Als Spezialfall erhält man die Fixpunktformel von Atiyah–Bott.
dct:subject
dbc:Differential_geometry
dbo:wikiPageID
35112066
dbo:wikiPageRevisionID
877021997
dbo:wikiPageWikiLink
dbr:Equivariant_bundle dbr:Dirac_operator dbr:Brauer's_theorem_on_induced_characters dbr:Fixed_point_(mathematics) dbr:Index_theorem dbr:Atiyah–Bott_formula dbr:Differential_geometry dbr:Clifford_module_bundle dbr:Supertrace dbc:Differential_geometry dbr:Equivariant_topological_K-theory dbr:Kawasaki's_Riemann–Roch_formula
owl:sameAs
n6:fAK1 freebase:m.010fhsr4 wikidata:Q17010857 dbpedia-de:Äquivarianter_Indexsatz
dbp:wikiPageUsesTemplate
dbt:Differential-geometry-stub
dbo:abstract
In der Mathematik ist der äquivariante Indexsatz eine von Michael Atiyah, Graeme Segal und Isadore Singer bewiesene Formel für die von Elementen einer mit einem Dirac-Operator kommutierenden Gruppenwirkung, die die Berechnung des äquivarianten Indexes von Dirac-Operatoren aus dem -Geschlecht der Fixpunktmenge und dem äquivarianten Chern-Charakter ermöglicht. Als Spezialfall erhält man die Fixpunktformel von Atiyah–Bott. In differential geometry, the equivariant index theorem, of which there are several variants, computes the (graded) trace of an element of a compact Lie group acting in given setting in terms of the integral over the fixed points of the element. If the element is neutral, then the theorem reduces to the usual index theorem. The classical formula such as the Atiyah–Bott formula is a special case of the theorem.
gold:hypernym
dbr:Variants
prov:wasDerivedFrom
wikipedia-en:Equivariant_index_theorem?oldid=877021997&ns=0
dbo:wikiPageLength
1592
foaf:isPrimaryTopicOf
wikipedia-en:Equivariant_index_theorem
Subject Item
dbr:Kawasaki's_Riemann–Roch_formula
dbo:wikiPageWikiLink
dbr:Equivariant_index_theorem
Subject Item
dbr:Atiyah–Singer_index_theorem
dbo:wikiPageWikiLink
dbr:Equivariant_index_theorem
Subject Item
dbr:Riemann–Roch-type_theorem
dbo:wikiPageWikiLink
dbr:Equivariant_index_theorem
Subject Item
dbr:Equivariant_index_theory
dbo:wikiPageWikiLink
dbr:Equivariant_index_theorem
dbo:wikiPageRedirects
dbr:Equivariant_index_theorem
Subject Item
wikipedia-en:Equivariant_index_theorem
foaf:primaryTopic
dbr:Equivariant_index_theorem