This HTML5 document contains 29 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n14https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Samuel_Eilenberg
dbo:wikiPageWikiLink
dbr:Eilenberg–Niven_theorem
dbp:knownFor
dbr:Eilenberg–Niven_theorem
dbo:knownFor
dbr:Eilenberg–Niven_theorem
Subject Item
dbr:Eilenberg-Niven_theorem
dbo:wikiPageWikiLink
dbr:Eilenberg–Niven_theorem
dbo:wikiPageRedirects
dbr:Eilenberg–Niven_theorem
Subject Item
dbr:Fundamental_theorem_of_algebra
dbo:wikiPageWikiLink
dbr:Eilenberg–Niven_theorem
Subject Item
dbr:Eilenberg–Niven_theorem
rdfs:label
Eilenberg–Niven theorem
rdfs:comment
Eilenberg–Niven theorem is a theorem that generalizes the fundamental theorem of algebra to quaternionic polynomials, that is, polynomials with quaternion coefficients and variables. It is due to Samuel Eilenberg and Ivan M. Niven.
dcterms:subject
dbc:Theorems_about_polynomials
dbo:wikiPageID
68726609
dbo:wikiPageRevisionID
1063669501
dbo:wikiPageWikiLink
dbr:Octonion dbr:Fundamental_theorem_of_algebra dbr:Samuel_Eilenberg dbr:Ivan_M._Niven dbr:Quaternion dbr:Non-associative_algebra dbc:Theorems_about_polynomials dbr:Polynomial
owl:sameAs
wikidata:Q108739396 n14:G8tKh
dbp:wikiPageUsesTemplate
dbt:Algebra-stub dbt:Reflist dbt:Short_description
dbo:abstract
Eilenberg–Niven theorem is a theorem that generalizes the fundamental theorem of algebra to quaternionic polynomials, that is, polynomials with quaternion coefficients and variables. It is due to Samuel Eilenberg and Ivan M. Niven.
prov:wasDerivedFrom
wikipedia-en:Eilenberg–Niven_theorem?oldid=1063669501&ns=0
dbo:wikiPageLength
2422
foaf:isPrimaryTopicOf
wikipedia-en:Eilenberg–Niven_theorem
Subject Item
wikipedia-en:Eilenberg–Niven_theorem
foaf:primaryTopic
dbr:Eilenberg–Niven_theorem