This HTML5 document contains 32 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n15https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Minkowski's_theorem
dbo:wikiPageWikiLink
dbr:Ehrhart's_volume_conjecture
Subject Item
dbr:Eugène_Ehrhart
dbo:wikiPageWikiLink
dbr:Ehrhart's_volume_conjecture
dbp:knownFor
dbr:Ehrhart's_volume_conjecture
dbo:knownFor
dbr:Ehrhart's_volume_conjecture
Subject Item
dbr:Ehrhart's_volume_conjecture
rdfs:label
Ehrhart's volume conjecture
rdfs:comment
In the geometry of numbers, Ehrhart's volume conjecture gives an upper bound on the volume of a convex body containing only one lattice point in its interior. It is a kind of converse to Minkowski's theorem, which guarantees that a centrally symmetric convex body K must contain a lattice point as soon as its volume exceeds . The conjecture states that a convex body K containing only one lattice point in its interior as its barycenter cannot have volume greater than : Ehrhart proved the conjecture in dimension 2 and in the case of simplices.
dct:subject
dbc:Conjectures dbc:Geometry_of_numbers dbc:Convex_analysis
dbo:wikiPageID
50521059
dbo:wikiPageRevisionID
1117677837
dbo:wikiPageWikiLink
dbc:Conjectures dbr:Standard_simplex dbr:Geometry_of_numbers dbr:Minkowski's_theorem dbc:Convex_analysis dbc:Geometry_of_numbers dbr:Center_of_mass dbr:Convex_body
owl:sameAs
wikidata:Q25105334 yago-res:Ehrhart's_volume_conjecture n15:2MktP
dbp:wikiPageUsesTemplate
dbt:Geometry-stub dbt:Citation dbt:Short_description
dbo:abstract
In the geometry of numbers, Ehrhart's volume conjecture gives an upper bound on the volume of a convex body containing only one lattice point in its interior. It is a kind of converse to Minkowski's theorem, which guarantees that a centrally symmetric convex body K must contain a lattice point as soon as its volume exceeds . The conjecture states that a convex body K containing only one lattice point in its interior as its barycenter cannot have volume greater than : Equality is achieved in this inequality when is a copy of the standard simplex in Euclidean n-dimensional space, whose sides are scaled up by a factor of . Equivalently, is congruent to the convex hull of the vectors , and for all . Presented in this manner, the origin is the only lattice point interior to the convex body K. The conjecture, furthermore, asserts that equality is achieved in the above inequality if and only if K is unimodularly equivalent to . Ehrhart proved the conjecture in dimension 2 and in the case of simplices.
prov:wasDerivedFrom
wikipedia-en:Ehrhart's_volume_conjecture?oldid=1117677837&ns=0
dbo:wikiPageLength
1889
foaf:isPrimaryTopicOf
wikipedia-en:Ehrhart's_volume_conjecture
Subject Item
dbr:Pi
dbo:wikiPageWikiLink
dbr:Ehrhart's_volume_conjecture
Subject Item
dbr:List_of_unsolved_problems_in_mathematics
dbo:wikiPageWikiLink
dbr:Ehrhart's_volume_conjecture
Subject Item
wikipedia-en:Ehrhart's_volume_conjecture
foaf:primaryTopic
dbr:Ehrhart's_volume_conjecture