This HTML5 document contains 101 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n18http://dbpedia.org/resource/File:
dbpedia-cahttp://ca.dbpedia.org/resource/
n23https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
dbpedia-pthttp://pt.dbpedia.org/resource/
n12http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-frhttp://fr.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Monroe_D._Donsker
dbo:wikiPageWikiLink
dbr:Donsker's_theorem
Subject Item
dbr:Donsker's_theorem
rdf:type
yago:Hypothesis105888929 yago:Idea105833840 yago:StochasticProcess113561896 yago:Abstraction100002137 yago:Content105809192 yago:Proposition106750804 yago:Cognition100023271 yago:Message106598915 yago:WikicatStatisticalTheorems yago:Theorem106752293 yago:Model105890249 yago:WikicatStochasticProcesses yago:Concept105835747 yago:Communication100033020 yago:Statement106722453 yago:WikicatProbabilityTheorems yago:PsychologicalFeature100023100
rdfs:label
Teorema de Donsker Teorema de Donsker Théorème de Donsker Satz von Donsker Donsker's theorem
rdfs:comment
Der Satz von Donsker ist ein fundamentaler Satz aus der Stochastik, genauer aus der Theorie der stochastischen Prozesse. Der Satz begründet die Existenz des Wiener-Maßes bzw. der Brownschen Bewegung und bietet zugleich eine Konstruktionsmöglichkeit. Das Theorem ist die funktionale Variante des zentralen Grenzwertsatzes und ist deshalb auch unter dem Namen Funktionaler Grenzwertsatz und Donskersches Invarianzprinzip bekannt. Er wurde 1952 vom amerikanischen Mathematiker Monroe D. Donsker bewiesen. Em teoria da probabilidade, o teorema de Donsker (também conhecido como princípio da invariância de Donsker, ou teorema central do limite funcional), em homenagem ao matemático Monroe D. Donsker, é uma extensão funcional do teorema central do limite. En teoria de probabilitat, el teorema de Donsker (també conegut com principi d'invariància de Donsker, o teorema del límit central funcional), que du el nom de Monroe D. Donsker, és una extensió funcional del teorema del límit central. Sigui una seqüència de variables aleatòries independents i idènticament distribuïdes (i.i.d.) amb mitjana 0 i variància 1. Sigui Es coneix com al procés estocàstic . Defineixi's la ruta alelatòria escalada difusivament (procés de suma parcial) com In probability theory, Donsker's theorem (also known as Donsker's invariance principle, or the functional central limit theorem), named after Monroe D. Donsker, is a functional extension of the central limit theorem. Let be a sequence of independent and identically distributed (i.i.d.) random variables with mean 0 and variance 1. Let . The stochastic process is known as a random walk. Define the diffusively rescaled random walk (partial-sum process) by En théorie des probabilités, le théorème de Donsker établit la convergence en loi d'une marche aléatoire vers un processus stochastique gaussien. Il est parfois appelé le théorème central limite fonctionnel. Ce théorème est une référence pour la convergence en loi de marches aléatoires renormalisées vers un processus à temps continus. De nombreux théorèmes sont alors dits de « type Donsker ».
foaf:depiction
n12:Donskers_invariance_principle.gif
dcterms:subject
dbc:Probability_theorems dbc:Empirical_process dbc:Theorems_in_statistics
dbo:wikiPageID
3828419
dbo:wikiPageRevisionID
1046693575
dbo:wikiPageWikiLink
dbr:Convergence_in_probability dbr:Monroe_D._Donsker dbr:Probability_theory dbr:Weak_convergence_of_measures dbr:Glivenko–Cantelli_theorem dbr:Gaussian_process dbr:Converges_in_distribution dbr:Càdlàg dbr:Convergence_in_distribution dbr:Function_space dbr:Independent_and_identically_distributed_random_variables dbr:Random_walk dbr:Kolmogorov–Smirnov_test dbr:Wiener_process dbr:Brownian_bridge dbr:Uniform_distribution_(continuous) dbr:Komlós–Major–Tusnády_approximation dbr:Central_limit_theorem n18:Donskers_invariance_principle.gif dbr:Empirical_distribution_function dbc:Empirical_process dbr:Normal_distribution dbr:Skorokhod_space dbr:Continuous_function dbr:Gaussian_random_variable dbc:Theorems_in_statistics dbc:Probability_theorems dbr:Random_variable
owl:sameAs
wikidata:Q3527064 dbpedia-fr:Théorème_de_Donsker dbpedia-ca:Teorema_de_Donsker freebase:m.02vkdgw dbpedia-de:Satz_von_Donsker yago-res:Donsker's_theorem dbpedia-pt:Teorema_de_Donsker n23:3FR6C
dbp:wikiPageUsesTemplate
dbt:Reflist
dbo:thumbnail
n12:Donskers_invariance_principle.gif?width=300
dbo:abstract
In probability theory, Donsker's theorem (also known as Donsker's invariance principle, or the functional central limit theorem), named after Monroe D. Donsker, is a functional extension of the central limit theorem. Let be a sequence of independent and identically distributed (i.i.d.) random variables with mean 0 and variance 1. Let . The stochastic process is known as a random walk. Define the diffusively rescaled random walk (partial-sum process) by The central limit theorem asserts that converges in distribution to a standard Gaussian random variable as . Donsker's invariance principle extends this convergence to the whole function . More precisely, in its modern form, Donsker's invariance principle states that: As random variables taking values in the Skorokhod space , the random function converges in distribution to a standard Brownian motion as Der Satz von Donsker ist ein fundamentaler Satz aus der Stochastik, genauer aus der Theorie der stochastischen Prozesse. Der Satz begründet die Existenz des Wiener-Maßes bzw. der Brownschen Bewegung und bietet zugleich eine Konstruktionsmöglichkeit. Das Theorem ist die funktionale Variante des zentralen Grenzwertsatzes und ist deshalb auch unter dem Namen Funktionaler Grenzwertsatz und Donskersches Invarianzprinzip bekannt. Er wurde 1952 vom amerikanischen Mathematiker Monroe D. Donsker bewiesen. En théorie des probabilités, le théorème de Donsker établit la convergence en loi d'une marche aléatoire vers un processus stochastique gaussien. Il est parfois appelé le théorème central limite fonctionnel. Ce théorème est une référence pour la convergence en loi de marches aléatoires renormalisées vers un processus à temps continus. De nombreux théorèmes sont alors dits de « type Donsker ». Em teoria da probabilidade, o teorema de Donsker (também conhecido como princípio da invariância de Donsker, ou teorema central do limite funcional), em homenagem ao matemático Monroe D. Donsker, é uma extensão funcional do teorema central do limite. En teoria de probabilitat, el teorema de Donsker (també conegut com principi d'invariància de Donsker, o teorema del límit central funcional), que du el nom de Monroe D. Donsker, és una extensió funcional del teorema del límit central. Sigui una seqüència de variables aleatòries independents i idènticament distribuïdes (i.i.d.) amb mitjana 0 i variància 1. Sigui Es coneix com al procés estocàstic . Defineixi's la ruta alelatòria escalada difusivament (procés de suma parcial) com El teorema del límit central afirma que convergeix en distribució a una variable aleatòria gaussiana estàndard a mesura que . El principi d'invariància de Donsker estén aquesta convergència a la funció sencera . Més concretament, en la seva forma moderna, el principi d'invariància de Donsker afirma que: com que les variables aleatòries prenen valors en l'espai de Skorokhod , la funció aleatòria convergeix en distribució al moviment brownià estàndard a mesura que
prov:wasDerivedFrom
wikipedia-en:Donsker's_theorem?oldid=1046693575&ns=0
dbo:wikiPageLength
6253
foaf:isPrimaryTopicOf
wikipedia-en:Donsker's_theorem
Subject Item
dbr:List_of_probability_topics
dbo:wikiPageWikiLink
dbr:Donsker's_theorem
Subject Item
dbr:Gaussian_free_field
dbo:wikiPageWikiLink
dbr:Donsker's_theorem
Subject Item
dbr:Convergence_of_Probability_Measures
dbo:wikiPageWikiLink
dbr:Donsker's_theorem
Subject Item
dbr:Empirical_process
dbo:wikiPageWikiLink
dbr:Donsker's_theorem
Subject Item
dbr:Glivenko–Cantelli_theorem
dbo:wikiPageWikiLink
dbr:Donsker's_theorem
Subject Item
dbr:Kolmogorov–Smirnov_test
dbo:wikiPageWikiLink
dbr:Donsker's_theorem
Subject Item
dbr:Wiener_process
dbo:wikiPageWikiLink
dbr:Donsker's_theorem
Subject Item
dbr:Brownian_bridge
dbo:wikiPageWikiLink
dbr:Donsker's_theorem
Subject Item
dbr:Brownian_motion
dbo:wikiPageWikiLink
dbr:Donsker's_theorem
Subject Item
dbr:Brownian_web
dbo:wikiPageWikiLink
dbr:Donsker's_theorem
Subject Item
dbr:Catalog_of_articles_in_probability_theory
dbo:wikiPageWikiLink
dbr:Donsker's_theorem
Subject Item
dbr:Random_walk
dbo:wikiPageWikiLink
dbr:Donsker's_theorem
Subject Item
dbr:List_of_statistics_articles
dbo:wikiPageWikiLink
dbr:Donsker's_theorem
Subject Item
dbr:List_of_theorems
dbo:wikiPageWikiLink
dbr:Donsker's_theorem
Subject Item
dbr:Scaling_limit
dbo:wikiPageWikiLink
dbr:Donsker's_theorem
Subject Item
dbr:Stochastic_process
dbo:wikiPageWikiLink
dbr:Donsker's_theorem
Subject Item
dbr:Donsker_theorem
dbo:wikiPageWikiLink
dbr:Donsker's_theorem
dbo:wikiPageRedirects
dbr:Donsker's_theorem
Subject Item
dbr:Donsker’s_theorem
dbo:wikiPageWikiLink
dbr:Donsker's_theorem
dbo:wikiPageRedirects
dbr:Donsker's_theorem
Subject Item
wikipedia-en:Donsker's_theorem
foaf:primaryTopic
dbr:Donsker's_theorem