This HTML5 document contains 53 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-kohttp://ko.dbpedia.org/resource/
n18https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n8https://doi.org/
wikipedia-enhttp://en.wikipedia.org/wiki/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Meshfree_methods
dbo:wikiPageWikiLink
dbr:Diffuse_element_method
Subject Item
dbr:Index_of_physics_articles_(D)
dbo:wikiPageWikiLink
dbr:Diffuse_element_method
Subject Item
dbr:List_of_numerical_analysis_topics
dbo:wikiPageWikiLink
dbr:Diffuse_element_method
Subject Item
dbr:DEM_(disambiguation)
dbo:wikiPageWikiLink
dbr:Diffuse_element_method
dbo:wikiPageDisambiguates
dbr:Diffuse_element_method
Subject Item
dbr:Diffuse_element_method
rdf:type
yago:PartialDifferentialEquation106670866 yago:Abstraction100002137 yago:DifferentialEquation106670521 yago:Statement106722453 dbo:Software yago:WikicatPartialDifferentialEquations yago:MathematicalStatement106732169 yago:Equation106669864 yago:Communication100033020 yago:WikicatNumericalDifferentialEquations yago:Message106598915
rdfs:label
Diffuse element method 확산요소법
rdfs:comment
확산요소법(擴散要素法, 영어: diffuse element method, DEM)은 무요소법의 일종이다. (smoothed particle hydrodynamics)과 비슷하지만, 이동최소제곱법(moving least squares)을 적용한다. In numerical analysis the diffuse element method (DEM) or simply diffuse approximation is a meshfree method. The diffuse element method was developed by B. Nayroles, G. Touzot and Pierre Villon at the Universite de Technologie de Compiegne, in 1992.It is in concept rather similar to the much older smoothed particle hydrodynamics. In the paper they describe a "diffuse approximation method", a method for function approximation from a given set of points.In fact the method boils down to the well-known moving least squares for the particular case of a global approximation (using all available data points). Using this function approximation method, partial differential equations and thus fluid dynamic problems can be solved. For this, they coined the term diffuse element method (DEM).Advantages
dcterms:subject
dbc:Numerical_differential_equations dbc:Computational_fluid_dynamics
dbo:wikiPageID
7714496
dbo:wikiPageRevisionID
1099312121
dbo:wikiPageWikiLink
dbr:Smoothed_particle_hydrodynamics dbr:Computational_fluid_dynamics dbr:Meshfree_methods dbc:Numerical_differential_equations dbr:Finite_element_method dbr:Numerical_analysis dbr:Partial_differential_equation dbr:Moving_least_squares dbr:Function_approximation dbr:Fluid_dynamic dbc:Computational_fluid_dynamics
dbo:wikiPageExternalLink
n8:10.1007%2FBF00364252
owl:sameAs
wikidata:Q5275411 yago-res:Diffuse_element_method dbpedia-ko:확산요소법 freebase:m.0269q83 n18:4ia9E
dbp:wikiPageUsesTemplate
dbt:Fluiddynamics-stub dbt:Compu-physics-stub
dbo:abstract
In numerical analysis the diffuse element method (DEM) or simply diffuse approximation is a meshfree method. The diffuse element method was developed by B. Nayroles, G. Touzot and Pierre Villon at the Universite de Technologie de Compiegne, in 1992.It is in concept rather similar to the much older smoothed particle hydrodynamics. In the paper they describe a "diffuse approximation method", a method for function approximation from a given set of points.In fact the method boils down to the well-known moving least squares for the particular case of a global approximation (using all available data points). Using this function approximation method, partial differential equations and thus fluid dynamic problems can be solved. For this, they coined the term diffuse element method (DEM).Advantages over finite element methods are that DEM doesn't rely on a grid, and is more precise in the evaluation of the derivatives of the reconstructed functions. 확산요소법(擴散要素法, 영어: diffuse element method, DEM)은 무요소법의 일종이다. (smoothed particle hydrodynamics)과 비슷하지만, 이동최소제곱법(moving least squares)을 적용한다.
gold:hypernym
dbr:Method
prov:wasDerivedFrom
wikipedia-en:Diffuse_element_method?oldid=1099312121&ns=0
dbo:wikiPageLength
1449
foaf:isPrimaryTopicOf
wikipedia-en:Diffuse_element_method
Subject Item
dbr:Moving_least_squares
dbo:wikiPageWikiLink
dbr:Diffuse_element_method
Subject Item
dbr:Diffuse_approximation
dbo:wikiPageWikiLink
dbr:Diffuse_element_method
dbo:wikiPageRedirects
dbr:Diffuse_element_method
Subject Item
wikipedia-en:Diffuse_element_method
foaf:primaryTopic
dbr:Diffuse_element_method