This HTML5 document contains 45 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n16https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Prefrontal_cortex_basal_ganglia_working_memory
dbo:wikiPageWikiLink
dbr:Constructing_skill_trees
Subject Item
dbr:Constructing_skill_trees
rdf:type
dbo:AnatomicalStructure
rdfs:label
Constructing skill trees
rdfs:comment
Constructing skill trees (CST) is a hierarchical reinforcement learning algorithm which can build skill trees from a set of sample solution trajectories obtained from demonstration. CST uses an incremental MAP (maximum a posteriori) change point detection algorithm to segment each demonstration trajectory into skills and integrate the results into a skill tree. CST was introduced by , , Andrew Barto and Roderic Grupen in 2010.
dcterms:subject
dbc:Machine_learning_algorithms
dbo:wikiPageID
33986538
dbo:wikiPageRevisionID
1096373678
dbo:wikiPageWikiLink
dbr:Viterbi_algorithm dbr:Prefrontal_cortex_basal_ganglia_working_memory dbr:Andrew_Barto dbr:Scott_Kuindersma dbr:Roderic_Grupen dbr:Particle_filter dbc:Machine_learning_algorithms dbr:Maximum_a_posteriori dbr:George_Konidaris dbr:PinBall dbr:Skill_chaining dbr:Sammon_Mapping dbr:State–action–reward–state–action dbr:Reinforcement_learning dbr:Pseudocode
owl:sameAs
wikidata:Q5164411 freebase:m.0hn9txq n16:4iMEN
dbp:wikiPageUsesTemplate
dbt:Cite_conference dbt:Gamma dbt:Mvar dbt:Underset dbt:Reflist dbt:Su dbt:Sup dbt:Sub
dbp:b
t
dbp:p
2 T
dbo:abstract
Constructing skill trees (CST) is a hierarchical reinforcement learning algorithm which can build skill trees from a set of sample solution trajectories obtained from demonstration. CST uses an incremental MAP (maximum a posteriori) change point detection algorithm to segment each demonstration trajectory into skills and integrate the results into a skill tree. CST was introduced by , , Andrew Barto and Roderic Grupen in 2010.
gold:hypernym
dbr:Reinforcement
prov:wasDerivedFrom
wikipedia-en:Constructing_skill_trees?oldid=1096373678&ns=0
dbo:wikiPageLength
8477
foaf:isPrimaryTopicOf
wikipedia-en:Constructing_skill_trees
Subject Item
dbr:State–action–reward–state–action
dbo:wikiPageWikiLink
dbr:Constructing_skill_trees
Subject Item
dbr:Sammon_mapping
dbo:wikiPageWikiLink
dbr:Constructing_skill_trees
Subject Item
dbr:Outline_of_machine_learning
dbo:wikiPageWikiLink
dbr:Constructing_skill_trees
Subject Item
wikipedia-en:Constructing_skill_trees
foaf:primaryTopic
dbr:Constructing_skill_trees