This HTML5 document contains 22 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n13https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Quasiconvexity_(calculus_of_variations)
dbo:wikiPageWikiLink
dbr:Carathéodory_function
Subject Item
dbr:Constantin_Carathéodory
dbo:wikiPageWikiLink
dbr:Carathéodory_function
dbp:knownFor
dbr:Carathéodory_function
dbo:knownFor
dbr:Carathéodory_function
Subject Item
dbr:Carathéodory_function
rdfs:label
Carathéodory function
rdfs:comment
In Mathematical analysis, a Carathéodory function (or Carathéodory integrand) is a multivariable function that allows us to solve the following problem effectively: A composition of two Lebesgue-measurable functions does not have to be Lebesgue-measurable as well. Nevertheless, a composition of a measurable function with a continuous function is indeed Lebesgue-measurable, but in many situations, continuity is a too restrictive assumption. Carathéodory functions are more general than continuous functions, but still allow a composition with Lebesgue-measurable function to be measurable. Carathéodory functions play a significant role in calculus of variation, and it is named after the Greek mathematician Constantin Carathéodory.
dcterms:subject
dbc:Calculus_of_variations
dbo:wikiPageID
71308775
dbo:wikiPageRevisionID
1102605653
dbo:wikiPageWikiLink
dbc:Calculus_of_variations dbr:Constantin_Carathéodory dbr:Sobolev_space dbr:Calculus_of_variation
owl:sameAs
wikidata:Q113364629 n13:GTDuz
dbp:wikiPageUsesTemplate
dbt:Reflist
dbo:abstract
In Mathematical analysis, a Carathéodory function (or Carathéodory integrand) is a multivariable function that allows us to solve the following problem effectively: A composition of two Lebesgue-measurable functions does not have to be Lebesgue-measurable as well. Nevertheless, a composition of a measurable function with a continuous function is indeed Lebesgue-measurable, but in many situations, continuity is a too restrictive assumption. Carathéodory functions are more general than continuous functions, but still allow a composition with Lebesgue-measurable function to be measurable. Carathéodory functions play a significant role in calculus of variation, and it is named after the Greek mathematician Constantin Carathéodory.
prov:wasDerivedFrom
wikipedia-en:Carathéodory_function?oldid=1102605653&ns=0
dbo:wikiPageLength
3406
foaf:isPrimaryTopicOf
wikipedia-en:Carathéodory_function
Subject Item
dbr:Direct_method_in_the_calculus_of_variations
dbo:wikiPageWikiLink
dbr:Carathéodory_function
Subject Item
wikipedia-en:Carathéodory_function
foaf:primaryTopic
dbr:Carathéodory_function