This HTML5 document contains 41 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n17https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:(1+ε)-approximate_nearest_neighbor_search
rdf:type
yago:Rule105846932 dbo:SupremeCourtOfTheUnitedStatesCase yago:Event100029378 yago:WikicatClassificationAlgorithms yago:Abstraction100002137 yago:Algorithm105847438 yago:YagoPermanentlyLocatedEntity yago:Procedure101023820 yago:Act100030358 yago:WikicatSearchAlgorithms yago:PsychologicalFeature100023100 yago:Activity100407535 yago:WikicatApproximationAlgorithms
rdfs:label
(1+ε)-approximate nearest neighbor search
rdfs:comment
(1+ε)-approximate nearest neighbor search is a special case of the nearest neighbor search problem. The solution to the (1+ε)-approximate nearest neighbor search is a point or multiple points within distance (1+ε) R from a query point, where R is the distance between the query point and its true nearest neighbor. Reasons to approximate nearest neighbor search include the space and time costs of exact solutions in high-dimensional spaces (see curse of dimensionality) and that in some domains, finding an approximate nearest neighbor is an acceptable solution.
dcterms:subject
dbc:Search_algorithms dbc:Classification_algorithms dbc:Approximation_algorithms
dbo:wikiPageID
32003319
dbo:wikiPageRevisionID
1084960302
dbo:wikiPageWikiLink
dbr:Kd-tree dbr:Nearest_neighbor_search dbr:Locality_Sensitive_Hashing dbc:Approximation_algorithms dbr:Curse_of_dimensionality dbr:Brute_force_search dbc:Search_algorithms dbc:Classification_algorithms
owl:sameAs
wikidata:Q8083980 freebase:m.0gvrdhv n17:4y21h
dbp:wikiPageUsesTemplate
dbt:Short_description dbt:Algorithm-stub
dbo:abstract
(1+ε)-approximate nearest neighbor search is a special case of the nearest neighbor search problem. The solution to the (1+ε)-approximate nearest neighbor search is a point or multiple points within distance (1+ε) R from a query point, where R is the distance between the query point and its true nearest neighbor. Reasons to approximate nearest neighbor search include the space and time costs of exact solutions in high-dimensional spaces (see curse of dimensionality) and that in some domains, finding an approximate nearest neighbor is an acceptable solution. Approaches for solving (1+ε)-approximate nearest neighbor search include kd-trees, Locality Sensitive Hashing and brute force search.
gold:hypernym
dbr:Case
prov:wasDerivedFrom
wikipedia-en:(1+ε)-approximate_nearest_neighbor_search?oldid=1084960302&ns=0
dbo:wikiPageLength
1659
foaf:isPrimaryTopicOf
wikipedia-en:(1+ε)-approximate_nearest_neighbor_search
Subject Item
dbr:Ε-approximate_nearest_neighbor_search
dbo:wikiPageWikiLink
dbr:(1+ε)-approximate_nearest_neighbor_search
dbo:wikiPageRedirects
dbr:(1+ε)-approximate_nearest_neighbor_search
Subject Item
wikipedia-en:(1+ε)-approximate_nearest_neighbor_search
foaf:primaryTopic
dbr:(1+ε)-approximate_nearest_neighbor_search