An Entity of Type: programming language, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematical analysis, a thin set is a subset of n-dimensional complex space Cn with the property that each point has a neighbourhood on which some non-zero holomorphic function vanishes. Since the set on which a holomorphic function vanishes is closed and has empty interior (by the Identity theorem), a thin set is nowhere dense, and the closure of a thin set is also thin. The fine topology was introduced in 1940 by Henri Cartan to aid in the study of thin sets.

Property Value
dbo:abstract
  • In mathematical analysis, a thin set is a subset of n-dimensional complex space Cn with the property that each point has a neighbourhood on which some non-zero holomorphic function vanishes. Since the set on which a holomorphic function vanishes is closed and has empty interior (by the Identity theorem), a thin set is nowhere dense, and the closure of a thin set is also thin. The fine topology was introduced in 1940 by Henri Cartan to aid in the study of thin sets. (en)
dbo:wikiPageID
  • 36130784 (xsd:integer)
dbo:wikiPageLength
  • 985 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 690795504 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
gold:hypernym
rdf:type
rdfs:comment
  • In mathematical analysis, a thin set is a subset of n-dimensional complex space Cn with the property that each point has a neighbourhood on which some non-zero holomorphic function vanishes. Since the set on which a holomorphic function vanishes is closed and has empty interior (by the Identity theorem), a thin set is nowhere dense, and the closure of a thin set is also thin. The fine topology was introduced in 1940 by Henri Cartan to aid in the study of thin sets. (en)
rdfs:label
  • Thin set (analysis) (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License