An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Strongly correlated materials are a wide class of compounds that include insulators and electronic materials, and show unusual (often technologically useful) electronic and magnetic properties, such as metal-insulator transitions, heavy fermion behavior, half-metallicity, and spin-charge separation. The essential feature that defines these materials is that the behavior of their electrons or spinons cannot be described effectively in terms of non-interacting entities. Theoretical models of the electronic (fermionic) structure of strongly correlated materials must include electronic (fermionic) correlation to be accurate. As of recently, the label quantum materials is also used to refer to strongly correlated materials, among others.

Property Value
dbo:abstract
  • Strongly correlated materials are a wide class of compounds that include insulators and electronic materials, and show unusual (often technologically useful) electronic and magnetic properties, such as metal-insulator transitions, heavy fermion behavior, half-metallicity, and spin-charge separation. The essential feature that defines these materials is that the behavior of their electrons or spinons cannot be described effectively in terms of non-interacting entities. Theoretical models of the electronic (fermionic) structure of strongly correlated materials must include electronic (fermionic) correlation to be accurate. As of recently, the label quantum materials is also used to refer to strongly correlated materials, among others. (en)
  • 強相関電子系(きょうそうかんでんしけい、英: strongly correlated electron system)とは固体物理学の用語で、物質の中でも電子どうしの間に働く有効なクーロン相互作用が強いものをこのように呼び表す。 (ja)
  • 強關聯,又稱強關聯電子系統(英語:Strongly correlated electronic systems),是指電子間的交互作用不可忽略的系統,這類材料又稱。 在最简单的固態物理學理論中,固体中的电子之间的静电相互作用被忽略了,不会出现在哈密顿算符里。故各个电子被看成是独立的,不会相互影响(唯一的影响来自泡利不相容原理)。然而,在许多物质中(以过渡金属氧化物和镧系氧化物最典型,下面以前者为例),3d电子轨道之间交叠很大,d轨道上的电子相互靠近,静电能的增加将不能忽略。把这一部分能量写入哈密尔顿量,就得到强关联模型(又称赫巴德模型)。 顾名思义,电子此时相互影响,故称强关联。用这个模型,可以很容易的阐述莫特绝缘体。多数具有铁磁性或反铁磁性的物质,以及高溫超導體、自旋材料、鐵磁超導體等也是强关联的结果。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 2856466 (xsd:integer)
dbo:wikiPageLength
  • 10234 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1117940392 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdfs:comment
  • Strongly correlated materials are a wide class of compounds that include insulators and electronic materials, and show unusual (often technologically useful) electronic and magnetic properties, such as metal-insulator transitions, heavy fermion behavior, half-metallicity, and spin-charge separation. The essential feature that defines these materials is that the behavior of their electrons or spinons cannot be described effectively in terms of non-interacting entities. Theoretical models of the electronic (fermionic) structure of strongly correlated materials must include electronic (fermionic) correlation to be accurate. As of recently, the label quantum materials is also used to refer to strongly correlated materials, among others. (en)
  • 強相関電子系(きょうそうかんでんしけい、英: strongly correlated electron system)とは固体物理学の用語で、物質の中でも電子どうしの間に働く有効なクーロン相互作用が強いものをこのように呼び表す。 (ja)
  • 強關聯,又稱強關聯電子系統(英語:Strongly correlated electronic systems),是指電子間的交互作用不可忽略的系統,這類材料又稱。 在最简单的固態物理學理論中,固体中的电子之间的静电相互作用被忽略了,不会出现在哈密顿算符里。故各个电子被看成是独立的,不会相互影响(唯一的影响来自泡利不相容原理)。然而,在许多物质中(以过渡金属氧化物和镧系氧化物最典型,下面以前者为例),3d电子轨道之间交叠很大,d轨道上的电子相互靠近,静电能的增加将不能忽略。把这一部分能量写入哈密尔顿量,就得到强关联模型(又称赫巴德模型)。 顾名思义,电子此时相互影响,故称强关联。用这个模型,可以很容易的阐述莫特绝缘体。多数具有铁磁性或反铁磁性的物质,以及高溫超導體、自旋材料、鐵磁超導體等也是强关联的结果。 (zh)
rdfs:label
  • 強相関電子系 (ja)
  • Strongly correlated material (en)
  • 强关联 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:academicDiscipline of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:fields of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License