dbo:abstract
|
- Stephens' constant expresses the density of certain subsets of the prime numbers. Let and be two multiplicatively independent integers, that is, except when both and equal zero. Consider the set of prime numbers such that evenly divides for some power . The density of the set relative to the set of all primes is a rational multiple of (sequence in the OEIS) Stephens' constant is closely related to the Artin constant that arises in the study of primitive roots. (en)
- 스티븐스 상수(Stephens' Constant)에 대한 설명이다. (OEIS의 수열 ) 스티븐스상수는 소수 및 오일러의 곱셈 공식과 관련하여 소수 분포 밀도에대한 수학 상수이다. 스티븐스(Stephens, P. J.)는 일반화된 리만 가설을 가정하고서, 소수에 대한 집합의 밀도를 표현해 보였다. (ko)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 2001 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdfs:comment
|
- Stephens' constant expresses the density of certain subsets of the prime numbers. Let and be two multiplicatively independent integers, that is, except when both and equal zero. Consider the set of prime numbers such that evenly divides for some power . The density of the set relative to the set of all primes is a rational multiple of (sequence in the OEIS) Stephens' constant is closely related to the Artin constant that arises in the study of primitive roots. (en)
- 스티븐스 상수(Stephens' Constant)에 대한 설명이다. (OEIS의 수열 ) 스티븐스상수는 소수 및 오일러의 곱셈 공식과 관련하여 소수 분포 밀도에대한 수학 상수이다. 스티븐스(Stephens, P. J.)는 일반화된 리만 가설을 가정하고서, 소수에 대한 집합의 밀도를 표현해 보였다. (ko)
|
rdfs:label
|
- 스티븐스 상수 (ko)
- Stephens' constant (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |