An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In computational complexity theory, the Sipser–Lautemann theorem or Sipser–Gács–Lautemann theorem states that bounded-error probabilistic polynomial (BPP) time is contained in the polynomial time hierarchy, and more specifically Σ2 ∩ Π2. In 1983, Michael Sipser showed that BPP is contained in the polynomial time hierarchy. showed that BPP is actually contained in Σ2 ∩ Π2. contributed by giving a simple proof of BPP’s membership in Σ2 ∩ Π2, also in 1983. It is conjectured that in fact BPP=P, which is a much stronger statement than the Sipser–Lautemann theorem.

Property Value
dbo:abstract
  • En informatique théorique, plus précisément en théorie de la complexité, le théorème de Sipser-Gács-Lautemann (ou théorème de Sipser-Lautemann ou de Sipser-Gács) est le théorème qui énonce que la classe probabiliste BPP (bounded-error probabilistic polynomial time) est incluse dans la hiérarchie polynomiale. Cette relation d'inclusion est surprenante[Selon qui ?] car la définition de la hiérarchie polynomiale ne fait pas référence à la théorie des probabilités. (fr)
  • In computational complexity theory, the Sipser–Lautemann theorem or Sipser–Gács–Lautemann theorem states that bounded-error probabilistic polynomial (BPP) time is contained in the polynomial time hierarchy, and more specifically Σ2 ∩ Π2. In 1983, Michael Sipser showed that BPP is contained in the polynomial time hierarchy. showed that BPP is actually contained in Σ2 ∩ Π2. contributed by giving a simple proof of BPP’s membership in Σ2 ∩ Π2, also in 1983. It is conjectured that in fact BPP=P, which is a much stronger statement than the Sipser–Lautemann theorem. (en)
  • Em teoria da complexidade computacional, o teorema Sipser-Lautemann ou teorema Sipser-Gács-Lautemann estabelece que Bounded-error probabilistic polinomial time (BPP), está contida na hierarquia de tempo polinomial, e, mais especificamente, em Σ2 ∩ Π2. Em 1983, Michael Sipser mostrou que BPP está contida na hierarquia de tempo polinomial. mostrou que BPP está atualmente inserida em Σ2 ∩ Π2. contribuiu dando uma prova simples de que BPP está contida em Σ2 ∩ Π2, também em 1983. Conjectura-se que, na realidade, BPP = P, que é uma afirmação mais forte do que o teorema de Sipser-Lautemann. (pt)
dbo:wikiPageID
  • 2921620 (xsd:integer)
dbo:wikiPageLength
  • 6261 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1077984028 (xsd:integer)
dbo:wikiPageWikiLink
dbp:b
  • 2 (xsd:integer)
dbp:p
  • P (en)
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • En informatique théorique, plus précisément en théorie de la complexité, le théorème de Sipser-Gács-Lautemann (ou théorème de Sipser-Lautemann ou de Sipser-Gács) est le théorème qui énonce que la classe probabiliste BPP (bounded-error probabilistic polynomial time) est incluse dans la hiérarchie polynomiale. Cette relation d'inclusion est surprenante[Selon qui ?] car la définition de la hiérarchie polynomiale ne fait pas référence à la théorie des probabilités. (fr)
  • In computational complexity theory, the Sipser–Lautemann theorem or Sipser–Gács–Lautemann theorem states that bounded-error probabilistic polynomial (BPP) time is contained in the polynomial time hierarchy, and more specifically Σ2 ∩ Π2. In 1983, Michael Sipser showed that BPP is contained in the polynomial time hierarchy. showed that BPP is actually contained in Σ2 ∩ Π2. contributed by giving a simple proof of BPP’s membership in Σ2 ∩ Π2, also in 1983. It is conjectured that in fact BPP=P, which is a much stronger statement than the Sipser–Lautemann theorem. (en)
  • Em teoria da complexidade computacional, o teorema Sipser-Lautemann ou teorema Sipser-Gács-Lautemann estabelece que Bounded-error probabilistic polinomial time (BPP), está contida na hierarquia de tempo polinomial, e, mais especificamente, em Σ2 ∩ Π2. Em 1983, Michael Sipser mostrou que BPP está contida na hierarquia de tempo polinomial. mostrou que BPP está atualmente inserida em Σ2 ∩ Π2. contribuiu dando uma prova simples de que BPP está contida em Σ2 ∩ Π2, também em 1983. Conjectura-se que, na realidade, BPP = P, que é uma afirmação mais forte do que o teorema de Sipser-Lautemann. (pt)
rdfs:label
  • Théorème de Sipser-Gács-Lautemann (fr)
  • Teorema de Sipser–Lautemann (pt)
  • Sipser–Lautemann theorem (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License