An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In set theory a serial relation is a homogeneous relation expressing the connection of an element of a sequence to the following element. The successor function used by Peano to define natural numbers is the prototype for a serial relation. Bertrand Russell used serial relations in The Principles of Mathematics (1903) as he explored the foundations of order theory and its applications. The term serial relation was also used by B. A. Bernstein for an article showing that particular common axioms in order theory are nearly incompatible: connectedness, irreflexivity, and transitivity.

Property Value
dbo:abstract
  • En mathématiques, une relation binaire sur E est dite sérielle si chaque élément de E est en relation avec au moins un élément de E. Formellement, la propriété de sérialité pour une relation définie sur un ensemble s'écrit de la façon suivante : . (fr)
  • In set theory a serial relation is a homogeneous relation expressing the connection of an element of a sequence to the following element. The successor function used by Peano to define natural numbers is the prototype for a serial relation. Bertrand Russell used serial relations in The Principles of Mathematics (1903) as he explored the foundations of order theory and its applications. The term serial relation was also used by B. A. Bernstein for an article showing that particular common axioms in order theory are nearly incompatible: connectedness, irreflexivity, and transitivity. A serial relation R is an endorelation on a set U. As stated by Russell, where the universal and existential quantifiers refer to U. In contemporary language of relations, this property defines a total relation. But a total relation may be heterogeneous. Serial relations are of historic interest. For a relation R, let {y: xRy } denote the "successor neighborhood" of x. A serial relation can be equivalently characterized as a relation for which every element has a non-empty successor neighborhood. Similarly, an inverse serial relation is a relation in which every element has non-empty "predecessor neighborhood". In normal modal logic, the extension of fundamental axiom set K by the serial property results in axiom set D. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 12982585 (xsd:integer)
dbo:wikiPageLength
  • 5152 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1089489199 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En mathématiques, une relation binaire sur E est dite sérielle si chaque élément de E est en relation avec au moins un élément de E. Formellement, la propriété de sérialité pour une relation définie sur un ensemble s'écrit de la façon suivante : . (fr)
  • In set theory a serial relation is a homogeneous relation expressing the connection of an element of a sequence to the following element. The successor function used by Peano to define natural numbers is the prototype for a serial relation. Bertrand Russell used serial relations in The Principles of Mathematics (1903) as he explored the foundations of order theory and its applications. The term serial relation was also used by B. A. Bernstein for an article showing that particular common axioms in order theory are nearly incompatible: connectedness, irreflexivity, and transitivity. (en)
rdfs:label
  • Relation sérielle (fr)
  • Relazione seriale (it)
  • Serial relation (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License