An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Seidel's algorithm is an algorithm designed by Raimund Seidel in 1992 for the all-pairs-shortest-path problem for undirected, unweighted, connected graphs. It solves the problem in expected time for a graph with vertices, where is the exponent in the complexity of matrix multiplication. If only the distances between each pair of vertices are sought, the same time bound can be achieved in the worst case. Even though the algorithm is designed for connected graphs, it can be applied individually to each connected component of a graph with the same running time overall. There is an exception to the expected running time given above for computing the paths: if the expected running time becomes .

Property Value
dbo:abstract
  • Seidel's algorithm is an algorithm designed by Raimund Seidel in 1992 for the all-pairs-shortest-path problem for undirected, unweighted, connected graphs. It solves the problem in expected time for a graph with vertices, where is the exponent in the complexity of matrix multiplication. If only the distances between each pair of vertices are sought, the same time bound can be achieved in the worst case. Even though the algorithm is designed for connected graphs, it can be applied individually to each connected component of a graph with the same running time overall. There is an exception to the expected running time given above for computing the paths: if the expected running time becomes . (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 55206702 (xsd:integer)
dbo:wikiPageLength
  • 5215 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1068926046 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • Seidel's algorithm is an algorithm designed by Raimund Seidel in 1992 for the all-pairs-shortest-path problem for undirected, unweighted, connected graphs. It solves the problem in expected time for a graph with vertices, where is the exponent in the complexity of matrix multiplication. If only the distances between each pair of vertices are sought, the same time bound can be achieved in the worst case. Even though the algorithm is designed for connected graphs, it can be applied individually to each connected component of a graph with the same running time overall. There is an exception to the expected running time given above for computing the paths: if the expected running time becomes . (en)
rdfs:label
  • Seidel's algorithm (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License