An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In algebra, the Gelfand–Kirillov dimension (or GK dimension) of a right module M over a k-algebra A is: where the supremum is taken over all finite-dimensional subspaces and . An algebra is said to have polynomial growth if its Gelfand–Kirillov dimension is finite.

Property Value
dbo:abstract
  • In algebra, the Gelfand–Kirillov dimension (or GK dimension) of a right module M over a k-algebra A is: where the supremum is taken over all finite-dimensional subspaces and . An algebra is said to have polynomial growth if its Gelfand–Kirillov dimension is finite. (en)
  • Inom matematiken är Gelfand–Kirillodimensionen (eller GK-dimensionen) av en högermodul M över en k-algebra A där sup tas över alla ändligdimensionella delrum och . En algebra säges ha polynomisk tillväxt om dess Gelfand–Kirillovdimension är ändlig. (sv)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 35987396 (xsd:integer)
dbo:wikiPageLength
  • 2528 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1021878127 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In algebra, the Gelfand–Kirillov dimension (or GK dimension) of a right module M over a k-algebra A is: where the supremum is taken over all finite-dimensional subspaces and . An algebra is said to have polynomial growth if its Gelfand–Kirillov dimension is finite. (en)
  • Inom matematiken är Gelfand–Kirillodimensionen (eller GK-dimensionen) av en högermodul M över en k-algebra A där sup tas över alla ändligdimensionella delrum och . En algebra säges ha polynomisk tillväxt om dess Gelfand–Kirillovdimension är ändlig. (sv)
rdfs:label
  • Gelfand–Kirillov dimension (en)
  • Gelfand–Kirillovdimension (sv)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License