An Entity of Type: populated place, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Freund–Rubin compactification is a form of dimensional reduction in which a field theory in d-dimensional spacetime, containing gravity and some field whose field strength is a rank s antisymmetric tensor, 'prefers' to be reduced down to a spacetime with a dimension of either s or d-s.

Property Value
dbo:abstract
  • Freund–Rubin compactification is a form of dimensional reduction in which a field theory in d-dimensional spacetime, containing gravity and some field whose field strength is a rank s antisymmetric tensor, 'prefers' to be reduced down to a spacetime with a dimension of either s or d-s. (en)
  • 이론물리학에서 프로인드-루빈 콤팩트화(Freund-Rubin compact化, 영어: Freund–Rubin compactification)는 미분 형식 전기역학을 물질로 갖는 일반 상대성 이론의 시공간이 자연스럽게 갖는, 초구와 반 더 시터르 공간의 곱공간의 꼴의 해이다. (ko)
dbo:wikiPageID
  • 10462678 (xsd:integer)
dbo:wikiPageLength
  • 5667 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1112310523 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • Freund–Rubin compactification is a form of dimensional reduction in which a field theory in d-dimensional spacetime, containing gravity and some field whose field strength is a rank s antisymmetric tensor, 'prefers' to be reduced down to a spacetime with a dimension of either s or d-s. (en)
  • 이론물리학에서 프로인드-루빈 콤팩트화(Freund-Rubin compact化, 영어: Freund–Rubin compactification)는 미분 형식 전기역학을 물질로 갖는 일반 상대성 이론의 시공간이 자연스럽게 갖는, 초구와 반 더 시터르 공간의 곱공간의 꼴의 해이다. (ko)
rdfs:label
  • Freund–Rubin compactification (en)
  • 프로인드-루빈 콤팩트화 (ko)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License