An Entity of Type: person, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In probability theory, a Fleming–Viot process (F–V process) is a member of a particular subset of probability measure-valued Markov processes on compact metric spaces, as defined in the 1979 paper by Wendell Helms Fleming and Michel Viot. Such processes are martingales and diffusions. The Fleming–Viot processes have proved to be important to the development of a mathematical basis for the theories behind allele drift.They are generalisations of the Wright–Fisher process and arise as infinite population limits of suitably rescaled variants of Moran processes.

Property Value
dbo:abstract
  • In probability theory, a Fleming–Viot process (F–V process) is a member of a particular subset of probability measure-valued Markov processes on compact metric spaces, as defined in the 1979 paper by Wendell Helms Fleming and Michel Viot. Such processes are martingales and diffusions. The Fleming–Viot processes have proved to be important to the development of a mathematical basis for the theories behind allele drift.They are generalisations of the Wright–Fisher process and arise as infinite population limits of suitably rescaled variants of Moran processes. (en)
  • Em teoria das probabilidades, um processo de Fleming–Viot (processo F–V) é um membro de um subconjunto particular de processos de Markov com valores em medidas de probabilidade em espaços métricos compactos, conforme definido no artigo de 1979 de Wendell Fleming e Michel Viot. Tais processos são martingales e difusões. Os processos de Fleming–Viot se mostraram importantes para o desenvolvimento de uma base matemática para as teorias por trás da deriva de alelos. Eles são generalizações do processo de Wright–Fisher e surgem como limites de população infinita de variantes adequadamente reescalonadas de processos de Moran. (pt)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 6195096 (xsd:integer)
dbo:wikiPageLength
  • 1878 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1123478672 (xsd:integer)
dbo:wikiPageWikiLink
dbp:date
  • 2016-03-03 (xsd:date)
dbp:url
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In probability theory, a Fleming–Viot process (F–V process) is a member of a particular subset of probability measure-valued Markov processes on compact metric spaces, as defined in the 1979 paper by Wendell Helms Fleming and Michel Viot. Such processes are martingales and diffusions. The Fleming–Viot processes have proved to be important to the development of a mathematical basis for the theories behind allele drift.They are generalisations of the Wright–Fisher process and arise as infinite population limits of suitably rescaled variants of Moran processes. (en)
  • Em teoria das probabilidades, um processo de Fleming–Viot (processo F–V) é um membro de um subconjunto particular de processos de Markov com valores em medidas de probabilidade em espaços métricos compactos, conforme definido no artigo de 1979 de Wendell Fleming e Michel Viot. Tais processos são martingales e difusões. (pt)
rdfs:label
  • Fleming–Viot process (en)
  • Processo de Fleming–Viot (pt)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License