About: Peano axioms

An Entity of Type: Integer113728499, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete.

Property Value
dbo:abstract
  • Els axiomes de Peano (o postulats de Peano) són un conjunt d'axiomes de segon ordre que defineixen de manera exacta la teoria dels nombres naturals. Varen ser establerts l'any 1889 per Giuseppe Peano (1858-1932), matemàtic italià,, a l'article Arithmetices principia, nova methodo exposita ("Els principis de l'aritmètica, presentats per un nou mètode"). La teoria de primer ordre que sorgeix d'aquests axiomes s'anomena Aritmètica de Peano (PA). Els axiomes de Peano serveixen per construir molts dels conjunts de sistemes numèrics (nombres enters, racionals, reals, complexos…), i les estructures matemàtiques que s'utilitzen avui en dia. L'aritmètica de Peano constitueix el punt fonamental per al formalisme de l'aritmètica. (ca)
  • V matematice jsou Peanovy axiomy axiomy v predikátové logice druhého řádu, které vystihují vlastnosti přirozených čísel. Až na izomorfismus existuje jediný model v němž platí Peanovy axiomy, a to množina přirozených čísel s nulou . Peanovy axiomy lze zapsat i v logice prvního řádu - teorie určená těmito axiomy se nazývá Peanova aritmetika. Systém axiomů Peanovy aritmetiky je však podstatně slabší než systém Peanových axiomů, neboť například připouští existenci modelů neizomorfních s . Autorem Peanových axiomů je Giuseppe Peano. (cs)
  • تعرف بديهيات بيانو، المسماة أيضاً مسلمات بيانو، في علم المنطق الرياضي بأنها مجموعة من البديهيات المتعلقة بالأعداد الطبيعية. أوجدها في القرن التاسع عشر عالم الرياضيات الإيطالي جيوسيبي بيانو. استُخدمت هذه البديهيات كما هي وبدون تعديلات تذكر في عدد من الأبحاث الرياضية أهمها التحقق من اتساق وكمال نظرية الأعداد. أثار هيرمان كراسمان عام 1860 الاهتمام حول الشكليات (بالإنجليزية: formalism)‏ الحسابية من خلال أبحاثه التي بين فيها إمكانية استقراء العديد من الحقائق الرياضية المعقدة بدءاً من حقائق قاعدية بسيطة توضح ماهية عملية التالي وطريقة القيام بالاستقراء. عام 1881 أوجد الرياضي تشارلز ساندرز بيرس تبديهاً (أي تبسيطاً للحقائق) (بالإنجليزية: Axiomatization)‏ لحساب الأعداد الطبيعية. وقد اقترح ريتشارد ديدكايند عام 1888 جملةً من البديهيات المتعلقة بالأعداد، ونشر بيانو عام 1889 ضمن كتابه «مبادئ الحساب موضحةً بطريقة جديدة» (باللاتينية: Arithmetices principia, nova methodo exposita) نسخةً أكثر دقة من هذه البديهيات. تقع بديهيات بيانو ضمن ثلاث فئات: تحتوي الفئة الأولى على بديهية واحدة تجزم وجوب احتواء مجموعة الأعداد على عنصر واحد على الأقل. تتضمن الفئة الثانية أربع بديهيات تصف خصائص المساواة، أما الفئة الثالثة فهي تتضمن جملاً من الرتبة الأولى تتعلق بالأعداد الطبيعية وتعبر عن الصفات الرئيسية لعملية التالي، بالإضافة إلى جملة واحدة من الرتبة الثانية تُعتبر قاعدةَ الاستقراء الرياضي للأعداد الطبيعية. من الجدير بالذكر أنه يمكن الحصول على نظام من منطق الرتبة الأولى أضعف (أقل قدرة تعبيرية) من حساب بيانو من خلال إضافة رموز عمليات الجمع والضرب إلى جملة البديهيات واستبدال بديهية الاستقراء ذات الرتبة الثانية من الرتبة الأولى. (ar)
  • Στη μαθηματική λογική τα αξιώματα Πεάνο, γνωστά και ως Αξιώματα -Πεάνο, είναι ένα σύνολο μαθηματικών προτάσεων που αφορούν στους φυσικούς αριθμούς και πρώτη φορά παρουσιάστηκαν τον 19ο αιώνα από τον Ιταλό μαθηματικό Τζουζέπε Πεάνο (ιταλικά: Giuseppe Peano). Τα αξιώματα αυτά έχουν χρησιμοποιηθεί σχεδόν αναλλοίωτα σε αρκετές μαθηματικές έρευνες που αφορούν θεμελιώδη ερωτήματα πάνω στη συμβατότητα και την πληρότητα της Θεωρίας των αριθμών. Η ανάγκη για στην αριθμητική δεν ήταν κοινώς αποδεκτή μέχρι που ο (Hermann Grassmann) έδειξε, τη δεκαετία του 1860, ότι πολλά αποτελέσματα της αριθμητικής μπορούσαν να παραχθούν από βασικότερες διαπιστώσεις πάνω στη "" και τη μαθηματική επαγωγή. Το 1881 ο Τσαρλς Σάντερς Περς (Charles Sanders Peirce) παρουσίασε ένα αξίωμα για τους φυσικούς αριθμούς. Το 1888 ο (Richard Dedekind) πρότεινε μια σειρά από αξιώματα, ώσπου το 1889 ο Πεάνο δημοσίευσε μια ακριβέστερη εκδοχή αυτών των αξιωμάτων, στο βιβλίο του: " Οι αρχές της Αριθμητικής παρουσιασμένες με νέα μέθοδο". (Λατινικά: "Arithmetices principia, nova methodo exposita"). Τα αξιώματα Πεάνο περιέχουν τρεις τύπους προτάσεων. Το πρώτο αξίωμα βεβαιώνει την ύπαρξη ενός τουλάχιστον στοιχείου του συνόλου "αριθμός". Τα επόμενα τέσσερα είναι γενικές προτάσεις σχετικά με την ισότητα. Τα επόμενα τρία αξιώματα είναι μιας πρώτης τάξεως σύστημα προτάσεων σχετικά με τους φυσικούς αριθμούς, που εκφράζουν τις θεμελιώδεις ιδιότητες της "συνάρτησης επόμενο". Το ένατο και τελευταίο αξίωμα είναι μιας δεύτερης τάξεως σύστημα προτάσεων για τη μαθηματική επαγωγή στους φυσικούς αριθμούς. (el)
  • Die Peano-Axiome (auch Dedekind-Peano-Axiome oder Peano-Postulate) sind fünf Axiome, welche die natürlichen Zahlen und ihre Eigenschaften charakterisieren. Sie wurden 1889 vom italienischen Mathematiker Giuseppe Peano formuliert und dienen bis heute als Standardformalisierung der Arithmetik für metamathematische Untersuchungen. Während die ursprüngliche Version von Peano in Prädikatenlogik zweiter Stufe formalisiert werden kann, wird heute meist eine schwächere Variante in Prädikatenlogik erster Stufe verwendet, die als Peano-Arithmetik bezeichnet wird. Mit Ausnahme von Vertretern des Ultrafinitismus wird die Peano-Arithmetik in der Mathematik allgemein als korrekte und konsistente Charakterisierung der natürlichen Zahlen anerkannt. Andere Formalisierungen der natürlichen Zahlen, die mit der Peano-Arithmetik verwandt sind, sind die Robinson-Arithmetik und die Primitiv rekursive Arithmetik. Richard Dedekind bewies bereits 1888 den sogenannten Isomorphiesatz von Dedekind, dass alle Modelle der Peano-Arithmetik mit Induktionsaxiom zweiter Stufe isomorph zum Standardmodell sind, d. h., dass die Struktur der natürlichen Zahlen so bis auf Benennung eindeutig charakterisiert wird. Dies gilt dagegen nicht für die erststufige Formalisierung, aus dem Satz von Löwenheim-Skolem folgt die Existenz von paarweise nicht isomorphen Modellen (u. a. Modellen jeder unendlichen Kardinalität), die die Peano-Axiome erfüllen. (de)
  • Los axiomas de Peano o postulados de Peano son un sistema de axiomas de segundo orden para la aritmética ideados por el matemático Giuseppe Peano en el siglo XIX, para definir los números naturales. Estos axiomas se han utilizado prácticamente sin cambios en diversas investigaciones matemáticas, incluyendo cuestiones acerca de la consistencia y completitud de la aritmética y la teoría de números. Los publicó en 1889, en un folleto de unas treinta páginas, intitulado Aritmetices principia, nova methodo exposita, que se traduce por Nuevo método de exposición de los principios de la aritmética. Da una lista de nueve axiomas, de los cuales cuatro versan sobre el uso del signo "". Los demás se conocen como "Axiomas de Peano". Los matemáticos los consideran como la plataforma preliminar para forjar los siguientes conjuntos usuales de números. La idea pivotal de Peano fue la de "sucesor".​ (es)
  • Logika matematikoan, Peanoren axiomak edo Peanoren postulatuak Giuseppe Peanok (XIX. mendeko matematikalari italiarrak) zenbaki arruntak definitzeko sorturiko axiomen multzoa da. Axioma hauek ia aldatu gabe erabili izan dira matematikako ikerketa ugaritan, zenbakien teoria koherentea eta osoa den frogatzeko esate baterako. Aritmetika formaltzeko beharra ez zen ongi baloratu Herman Grassmann en lana arte. 1860ko hamarkadan, Grassmannen lanak, aritmetikako datu asko oinarrizkoagoak diren ondorengo eragiketa eta indukzio gertaeretatik eratorri zitezkeela erakutsi zuen. 1881ean, Charles Sanders Peirce -k zenbaki naturalen axiomatizazioa eskaini zuen. 1888.urtean, Richard Dedekind matematikalariak zenbaki naturalen aritmetikari buruzko beste axiomatizazioa bat eskaini zuen, eta 1889an Peanok axioma horien bertsio sinpleago bat argitaratu zuen, deituriko liburuxka batean. Liburuxka horretan bederatzi axioma ageri dira, baina horietako bost nahikoak dira zenbaki arruten multzoa sortarazteko. Axioma hauek beste sortzeko oinarria dira. Aipatutako Peanoren bederatzi axiomek, hiru motatako adierazpenak egiten dituzte. Lehenengoak, zenbaki arrunten multzoko gutxienez elementu baten existentzia berresten du. Hurrengo lau axiomak berriz, berdintasunaren inguruko adierazpen orokorrak dira, eta hauek, prozedura modernoetan ez dira Peanoren axioma gisa hartzen, "azpiko logika" gisa baizik. Ondorengo hirurak, lehen ordeneko enuntziatuak dira, zenbaki natural bakoitzaren ondorengoaren oinarrizko propietateen ingurukoa. Bederatzigarren eta azken axioma berriz, bigarren ordeneko zenbaki naturalei buruzko indukzio matematikoaren enuntziatu bat da. Lehen ordeneko sistema sinpleago bat, Peanoren aritmetika deritzona, batura eta biderketaren operaketen sinboloak gehituz eta bigarren ordeneko indukzio matematikoaren axioma lehen ordeneko axiomen eskema batez ordezkatuz lortzen da. (eu)
  • En mathématiques, les axiomes de Peano sont des axiomes pour l'arithmétique proposés initialement à la fin du XIXe siècle par Giuseppe Peano, et qui connaissent aujourd'hui plusieurs présentations qui ne sont pas équivalentes, suivant la théorie sous-jacente, théorie des ensembles, logique du second ordre ou d'ordre supérieur, ou logique du premier ordre. Richard Dedekind avait proposé une formalisation assez proche, sous une forme non axiomatique. (fr)
  • In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete. The need to formalize arithmetic was not well appreciated until the work of Hermann Grassmann, who showed in the 1860s that many facts in arithmetic could be derived from more basic facts about the successor operation and induction. In 1881, Charles Sanders Peirce provided an axiomatization of natural-number arithmetic. In 1888, Richard Dedekind proposed another axiomatization of natural-number arithmetic, and in 1889, Peano published a simplified version of them as a collection of axioms in his book, The principles of arithmetic presented by a new method (Latin: Arithmetices principia, nova methodo exposita). The nine Peano axioms contain three types of statements. The first axiom asserts the existence of at least one member of the set of natural numbers. The next four are general statements about equality; in modern treatments these are often not taken as part of the Peano axioms, but rather as axioms of the "underlying logic". The next three axioms are first-order statements about natural numbers expressing the fundamental properties of the successor operation. The ninth, final axiom is a second-order statement of the principle of mathematical induction over the natural numbers, which makes this formulation close to second-order arithmetic. A weaker first-order system called Peano arithmetic is obtained by explicitly adding the addition and multiplication operation symbols and replacing the second-order induction axiom with a first-order axiom schema. (en)
  • Dalam logika matematika, aksioma Peano, juga dikenal sebagai aksioma Dedekind–Peano atau postulat Peano, adalah aksioma-aksioma untuk bilangan asli yang disampaikan oleh matematikawan Italia abad ke-19 Giuseppe Peano. Aksioma-aksioma tersebut telah digunakan hampir tanpa diubah dalam beberapa penyelidikan metamatematika, termasuk penelitian mengenai pertanyaan fundamental mengenai apakah teori bilangan bersifat konsisten dan . Keperluan untuk memformalkan aritmetika tidak terlalu dipikirkan hingga karya Hermann Grassmann, yang menunjukkan pada 1860-an bahwa banyak fakta dalam aritmetika yang bisa diperoleh dari fakta lebih mendasar mengenai dan induksi. Pada tahun 1881, Charles Sanders Peirce memberikan pengaksiomaan dari aritmetika bilangan asli. Pada tahun 1888, Richard Dedekind mengusulkan pengaksiomaan aritmetika bilangan asli lainnya, dan pada tahun 1889, Peano menerbitkan versi sederhana dari mereka sebagai kumpulan aksioma dalam bukunya, (bahasa Latin: Arithmetices principia, nova methodo exposita). Aksioma Peano berisi tiga jenis pernyataan. Aksioma pertama menegaskan keberadaan paling tidak satu anggota dari himpunan bilangan asli. Empat aksioma berikutnya adalah pernyataan umum mengenai kesamaan; dalam penafsiran modern aksioma-aksioma ini tidak dianggap sebagai bagian dari aksioma Peano, melainkan sebagai aksioma-aksioma dari "logika yang mendasarinya". Tiga aksioma berikutnya merupakan pernyataan tingkat pertama mengenai bilangan asli mengekspresikan sifat-sifat mendasar dari operasi penerus. Aksioma kesembilan, dan yang terakhir, adalah pernyataan mengenai prinsip induksi matematika pada bilangan asli. Sebuah sistem tingkat pertama yang lebih lemah dan disebut aritmetika Peano diperoleh dengan secara eksplisit menambahkan simbol operasi penambahan dan perkalian serta menggantikan aksioma dengan sebuah tingkat pertama. (in)
  • 페아노 공리계(Peano公理系, 영어: Peano’s axioms)는 수리논리학에서 자연수 체계를 묘사하는 공리들이다. 수론의 일관성 및 연구에도 사용된다. 페아노의 공리들은 세 종류로 나눌 수 있다. 처음의 네 공리는 동일성에 대한 일반적인 명제로, 현대에는 보통 순수 논리의 공리로 취급된다. 다음의 네 공리는 따름수 연산의 근본적인 성질들을 자연수에 대한 1차 논리적 명제로 표현한 것이다. 마지막 9번째 공리는 수학적 귀납법을 표현한 2차 논리의 명제이다. 이 마지막 공리를 1차 논리의 로 대체한 체계를 페아노 산술이라고 하는데, 이는 페아노가 원래 제안한 것보다 약한 체계이다. (ko)
  • ペアノの公理(ペアノのこうり、英: Peano axioms) とは、自然数全体を公理化したものである。1891年に、ジュゼッペ・ペアノによって定義された。 (ja)
  • Gli assiomi di Peano sono un gruppo di assiomi ideati dal matematico Giuseppe Peano al fine di definire assiomaticamente l'insieme dei numeri naturali. Un modo informale di descrivere gli assiomi può essere il seguente: 1. * Esiste un numero naturale, 0 2. * Ogni numero naturale ha un numero naturale successore 3. * Numeri diversi hanno successori diversi 4. * 0 non è il successore di alcun numero naturale 5. * Ogni sottoinsieme di numeri naturali che contenga lo zero e il successore di ogni proprio elemento coincide con l'intero insieme dei numeri naturali (assioma dell'induzione) Si prende 0 o 1 a seconda del modello dei numeri naturali voluto. Oltre a questi assiomi, Peano sottintende anche gli assiomi logici che gli permettono di operare con la logica simbolica. (it)
  • In de wiskundige logica zijn de axioma's van Peano (ook bekend als de axioma's van Dedekind-Peano of de postulaten van Peano) een verzameling axioma's voor de natuurlijke getallen, geformuleerd door de 19e-eeuwse Italiaanse wiskundige Giuseppe Peano. Deze axioma's zijn in vrijwel onveranderde vorm in een aantal metawiskundige onderzoekingen gebruikt, waaronder fundamenteel onderzoek naar de consistentie en volledigheid van de getaltheorie. De behoefte aan formalisme in de rekenkunde werd niet op waarde geschat tot het werk van Hermann Grassmann, die in de jaren 1860 liet zien dat veel feiten in de rekenkunde kunnen worden afgeleid uit fundamentele eigenschappen van de opvolgeroperatie en de methode van de volledige inductie. In 1888 stelde Richard Dedekind een collectie van axioma's voor over de getallen, en in 1889 publiceerde Peano een meer precies geformuleerde versie ervan als een collectie van axioma's in zijn boek, Arithmetices principia, nova methodo exposita (Latijn voor: De beginselen van de rekenkunde op een nieuwe methode gepresenteerd). De axioma's van Peano bevatten drie typen van uitspraken. De eerste vier uitspraken zijn algemene uitspraken over gelijkheid; in moderne behandelingen worden deze uitspraken vaak gezien als axioma's van pure logica. De volgende vier axioma's zijn uitspraken binnen de predicatenlogica, zij gaan over de natuurlijke getallen, die de fundamentele eigenschappen van de opvolgeroperatie uitdrukken. Het negende en laatste axioma legt de methode van volledige inductie over de natuurlijke getallen vast. Een zwakker eerste-orde systeem, dat Peano-rekenkunde wordt genoemd, wordt verkregen door dit tweede-orde inductie-axioma te vervangen door een eerste-orde axiomaschema. (nl)
  • Peanos axiom (även kallad Dedekind–Peanos axiom) är en mängd axiom för de naturliga talen som presenterades av de den italienska matematikern Giuseppe Peano. Dessa axiom har varit viktiga inom forskning om fundamentala frågor som konsistens och fullständighet i talteori. Behovet av formalism inom aritmetiken insågs inte förrän Hermann Grassmann visade att man med hjälp av basala fakta om efterföljaroperationer och induktion kunde bevisa många andra resultat inom aritmetiken. I början 1880-talet bidrog Charles Sanders Peirce med en axiomatisk behandling av de naturliga talen och ett par år senare föreslog Richard Dedekind en samling av axiom för de naturliga talen. På slutet av 1880-talet publicerade Peano en mer precis formulerad version av den samlingen axiom i sin bok Arithmetices principia, nova methodo exposita (Aritmetikens principer visade med en ny metod). (sv)
  • Аксио́мы Пеа́но — одна из систем аксиом для натуральных чисел, введённая в 1889 году итальянским математиком Джузеппе Пеано. Аксиомы Пеано позволили формализовать арифметику, доказать многие свойства натуральных и целых чисел, а также использовать целые числа для построения формальных теорий рациональных и вещественных чисел. В сокращённом виде аксиомы Пеано использовались в ряде метаматематических разработок, включая решение фундаментальных вопросов о непротиворечивости и полноте теории чисел. Изначально Пеано постулировал девять аксиом. Первая утверждает существование по меньшей мере одного элемента множества чисел. Следующие четыре — общие утверждения о равенстве, отражающие внутреннюю логику аксиоматики и исключённые из современного состава аксиом, как очевидные. Следующие три — аксиомы на языке логики первого порядка о выражении натуральных чисел через фундаментальное свойство функции следования. Девятая и последняя аксиома на языке логики второго порядка — о принципе математической индукции над рядом натуральных чисел. Арифметика Пеано — система, получаемая заменой аксиомы индукции системой аксиом на языке логики первого порядка и добавлением символов операций сложения и умножения. (ru)
  • Em lógica matemática, os axiomas de Peano, também conhecidos como os axiomas de Dedekind-Peano ou postulados de Peano, são um conjunto de axiomas para os números naturais apresentado pelo matemático italiano do século XIX Giuseppe Peano. Esses axiomas vêm sendo utilizados praticamente sem modificações em diversas investigações metamatemáticas, incluindo pesquisas em questões fundamentais de consistência e completude da teoria dos números. A necessidade do formalismo na Aritmética não era apreciada até o trabalho de Hermann Grassmann, que mostrou na década de 1860 que muitos fatos da aritmética poderiam ser derivados de fatos mais básicos sobre operação de sucessor e indução. Em 1881, Charles Sanders Peirce mostrou uma forma de axiomatização da aritmética de números naturais. Em 1888, Richard Dedekind propôs uma coleção de axiomas sobre os números, e em 1889 Peano publicou uma versão mais precisamente formulada das anteriores, em uma coleção de axiomas no seu livro, "Os princípios da Aritmética apresentados por um novo método" (Em Latim: Arithmetices principia, nova methodo exposita). Os axiomas de Peano contêm três tipos de declarações. O primeiro axioma afirma a existência de pelo menos um membro no conjunto "números". As quatro seguintes são afirmações gerais a respeito de igualdade; em tratamentos modernos, estes geralmente não são tomados como parte dos axiomas de Peano, mas sim como axiomas da "lógica subjacente". Os próximos três axiomas são declarações da Lógica de primeira ordem sobre números naturais expressando as propriedades fundamentais da operação de sucessor. O nono e último axioma, é uma declaração da lógica de segunda ordem do princípio da indução matemática sobre os números naturais. Um sistema de primeira ordem mais "fraco" chamado aritmética de Peano é obtido ao adicionar os símbolos de adição e multiplicação e substituir o axioma de indução em segunda ordem por um de primeira ordem. (pt)
  • 皮亚诺公理(英語:Peano axioms;義大利語:Assiomi di Peano),也称皮亚诺公设,是意大利数学家朱塞佩·皮亚诺提出的关于自然数的五条公理系统。根据这五条公理可以建立起,也称皮亚诺算术系统。 (zh)
  • Аксіоми Пеано — одна із систем аксіом для натуральних чисел. В 1860-тих роках Герман Грассман показав, що багато тверджень арифметики можуть виводитись через властивості наступного числа та математичну індукцію. Основуючись на його роботах, Ріхард Дедекінд 1888 року запропонував систему аксіом для натуральних чисел, яка 1889 року була уточнена італійським математиком Джузеппе Пеано. Аксіоми Пеано дали змогу формалізувати арифметику. Хоча із теореми Геделя про неповноту випливає існування тверджень про натуральні числа, які не можна ні довести, ні заперечити, виходячи з аксіом Пеано. Деякі з них мають досить просте формулювання (див. теорема Гудштейна). (uk)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 25005 (xsd:integer)
dbo:wikiPageInterLanguageLink
dbo:wikiPageLength
  • 47612 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1113307994 (xsd:integer)
dbo:wikiPageWikiLink
dbp:id
  • p/p071880 (en)
dbp:mathStatement
  • Let M be a nonstandard model of PA and let C be a proper cut of M. Suppose that is a tuple of elements of M and is a formula in the language of arithmetic so that : for all b ∈ C. Then there is a c in M that is greater than every element of C such that : (en)
dbp:name
  • Overspill lemma (en)
dbp:title
  • PA (en)
  • Peano axioms (en)
  • Peano's Axioms (en)
dbp:urlname
  • pa (en)
  • PeanosAxioms (en)
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • V matematice jsou Peanovy axiomy axiomy v predikátové logice druhého řádu, které vystihují vlastnosti přirozených čísel. Až na izomorfismus existuje jediný model v němž platí Peanovy axiomy, a to množina přirozených čísel s nulou . Peanovy axiomy lze zapsat i v logice prvního řádu - teorie určená těmito axiomy se nazývá Peanova aritmetika. Systém axiomů Peanovy aritmetiky je však podstatně slabší než systém Peanových axiomů, neboť například připouští existenci modelů neizomorfních s . Autorem Peanových axiomů je Giuseppe Peano. (cs)
  • En mathématiques, les axiomes de Peano sont des axiomes pour l'arithmétique proposés initialement à la fin du XIXe siècle par Giuseppe Peano, et qui connaissent aujourd'hui plusieurs présentations qui ne sont pas équivalentes, suivant la théorie sous-jacente, théorie des ensembles, logique du second ordre ou d'ordre supérieur, ou logique du premier ordre. Richard Dedekind avait proposé une formalisation assez proche, sous une forme non axiomatique. (fr)
  • 페아노 공리계(Peano公理系, 영어: Peano’s axioms)는 수리논리학에서 자연수 체계를 묘사하는 공리들이다. 수론의 일관성 및 연구에도 사용된다. 페아노의 공리들은 세 종류로 나눌 수 있다. 처음의 네 공리는 동일성에 대한 일반적인 명제로, 현대에는 보통 순수 논리의 공리로 취급된다. 다음의 네 공리는 따름수 연산의 근본적인 성질들을 자연수에 대한 1차 논리적 명제로 표현한 것이다. 마지막 9번째 공리는 수학적 귀납법을 표현한 2차 논리의 명제이다. 이 마지막 공리를 1차 논리의 로 대체한 체계를 페아노 산술이라고 하는데, 이는 페아노가 원래 제안한 것보다 약한 체계이다. (ko)
  • ペアノの公理(ペアノのこうり、英: Peano axioms) とは、自然数全体を公理化したものである。1891年に、ジュゼッペ・ペアノによって定義された。 (ja)
  • 皮亚诺公理(英語:Peano axioms;義大利語:Assiomi di Peano),也称皮亚诺公设,是意大利数学家朱塞佩·皮亚诺提出的关于自然数的五条公理系统。根据这五条公理可以建立起,也称皮亚诺算术系统。 (zh)
  • تعرف بديهيات بيانو، المسماة أيضاً مسلمات بيانو، في علم المنطق الرياضي بأنها مجموعة من البديهيات المتعلقة بالأعداد الطبيعية. أوجدها في القرن التاسع عشر عالم الرياضيات الإيطالي جيوسيبي بيانو. استُخدمت هذه البديهيات كما هي وبدون تعديلات تذكر في عدد من الأبحاث الرياضية أهمها التحقق من اتساق وكمال نظرية الأعداد. (ar)
  • Els axiomes de Peano (o postulats de Peano) són un conjunt d'axiomes de segon ordre que defineixen de manera exacta la teoria dels nombres naturals. Varen ser establerts l'any 1889 per Giuseppe Peano (1858-1932), matemàtic italià,, a l'article Arithmetices principia, nova methodo exposita ("Els principis de l'aritmètica, presentats per un nou mètode"). La teoria de primer ordre que sorgeix d'aquests axiomes s'anomena Aritmètica de Peano (PA). (ca)
  • Στη μαθηματική λογική τα αξιώματα Πεάνο, γνωστά και ως Αξιώματα -Πεάνο, είναι ένα σύνολο μαθηματικών προτάσεων που αφορούν στους φυσικούς αριθμούς και πρώτη φορά παρουσιάστηκαν τον 19ο αιώνα από τον Ιταλό μαθηματικό Τζουζέπε Πεάνο (ιταλικά: Giuseppe Peano). Τα αξιώματα αυτά έχουν χρησιμοποιηθεί σχεδόν αναλλοίωτα σε αρκετές μαθηματικές έρευνες που αφορούν θεμελιώδη ερωτήματα πάνω στη συμβατότητα και την πληρότητα της Θεωρίας των αριθμών. (el)
  • Die Peano-Axiome (auch Dedekind-Peano-Axiome oder Peano-Postulate) sind fünf Axiome, welche die natürlichen Zahlen und ihre Eigenschaften charakterisieren. Sie wurden 1889 vom italienischen Mathematiker Giuseppe Peano formuliert und dienen bis heute als Standardformalisierung der Arithmetik für metamathematische Untersuchungen. Während die ursprüngliche Version von Peano in Prädikatenlogik zweiter Stufe formalisiert werden kann, wird heute meist eine schwächere Variante in Prädikatenlogik erster Stufe verwendet, die als Peano-Arithmetik bezeichnet wird. Mit Ausnahme von Vertretern des Ultrafinitismus wird die Peano-Arithmetik in der Mathematik allgemein als korrekte und konsistente Charakterisierung der natürlichen Zahlen anerkannt. Andere Formalisierungen der natürlichen Zahlen, die mit d (de)
  • Los axiomas de Peano o postulados de Peano son un sistema de axiomas de segundo orden para la aritmética ideados por el matemático Giuseppe Peano en el siglo XIX, para definir los números naturales. Estos axiomas se han utilizado prácticamente sin cambios en diversas investigaciones matemáticas, incluyendo cuestiones acerca de la consistencia y completitud de la aritmética y la teoría de números. (es)
  • Logika matematikoan, Peanoren axiomak edo Peanoren postulatuak Giuseppe Peanok (XIX. mendeko matematikalari italiarrak) zenbaki arruntak definitzeko sorturiko axiomen multzoa da. Axioma hauek ia aldatu gabe erabili izan dira matematikako ikerketa ugaritan, zenbakien teoria koherentea eta osoa den frogatzeko esate baterako. (eu)
  • In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete. (en)
  • Dalam logika matematika, aksioma Peano, juga dikenal sebagai aksioma Dedekind–Peano atau postulat Peano, adalah aksioma-aksioma untuk bilangan asli yang disampaikan oleh matematikawan Italia abad ke-19 Giuseppe Peano. Aksioma-aksioma tersebut telah digunakan hampir tanpa diubah dalam beberapa penyelidikan metamatematika, termasuk penelitian mengenai pertanyaan fundamental mengenai apakah teori bilangan bersifat konsisten dan . (in)
  • Gli assiomi di Peano sono un gruppo di assiomi ideati dal matematico Giuseppe Peano al fine di definire assiomaticamente l'insieme dei numeri naturali. Un modo informale di descrivere gli assiomi può essere il seguente: 1. * Esiste un numero naturale, 0 2. * Ogni numero naturale ha un numero naturale successore 3. * Numeri diversi hanno successori diversi 4. * 0 non è il successore di alcun numero naturale 5. * Ogni sottoinsieme di numeri naturali che contenga lo zero e il successore di ogni proprio elemento coincide con l'intero insieme dei numeri naturali (assioma dell'induzione) (it)
  • In de wiskundige logica zijn de axioma's van Peano (ook bekend als de axioma's van Dedekind-Peano of de postulaten van Peano) een verzameling axioma's voor de natuurlijke getallen, geformuleerd door de 19e-eeuwse Italiaanse wiskundige Giuseppe Peano. Deze axioma's zijn in vrijwel onveranderde vorm in een aantal metawiskundige onderzoekingen gebruikt, waaronder fundamenteel onderzoek naar de consistentie en volledigheid van de getaltheorie. (nl)
  • Аксио́мы Пеа́но — одна из систем аксиом для натуральных чисел, введённая в 1889 году итальянским математиком Джузеппе Пеано. Аксиомы Пеано позволили формализовать арифметику, доказать многие свойства натуральных и целых чисел, а также использовать целые числа для построения формальных теорий рациональных и вещественных чисел. В сокращённом виде аксиомы Пеано использовались в ряде метаматематических разработок, включая решение фундаментальных вопросов о непротиворечивости и полноте теории чисел. (ru)
  • Em lógica matemática, os axiomas de Peano, também conhecidos como os axiomas de Dedekind-Peano ou postulados de Peano, são um conjunto de axiomas para os números naturais apresentado pelo matemático italiano do século XIX Giuseppe Peano. Esses axiomas vêm sendo utilizados praticamente sem modificações em diversas investigações metamatemáticas, incluindo pesquisas em questões fundamentais de consistência e completude da teoria dos números. (pt)
  • Peanos axiom (även kallad Dedekind–Peanos axiom) är en mängd axiom för de naturliga talen som presenterades av de den italienska matematikern Giuseppe Peano. Dessa axiom har varit viktiga inom forskning om fundamentala frågor som konsistens och fullständighet i talteori. (sv)
  • Аксіоми Пеано — одна із систем аксіом для натуральних чисел. В 1860-тих роках Герман Грассман показав, що багато тверджень арифметики можуть виводитись через властивості наступного числа та математичну індукцію. Основуючись на його роботах, Ріхард Дедекінд 1888 року запропонував систему аксіом для натуральних чисел, яка 1889 року була уточнена італійським математиком Джузеппе Пеано. Аксіоми Пеано дали змогу формалізувати арифметику. (uk)
rdfs:label
  • مسلمات بيانو (ar)
  • Axiomes de Peano (ca)
  • Peanovy axiomy (cs)
  • Peano-Axiome (de)
  • Αξιώματα Πεάνο (el)
  • Axiomas de Peano (es)
  • Peanoren axiomak (eu)
  • Axiomes de Peano (fr)
  • Aksioma Peano (in)
  • Assiomi di Peano (it)
  • 페아노 공리계 (ko)
  • ペアノの公理 (ja)
  • Peano axioms (en)
  • Axioma's van Peano (nl)
  • Axiomas de Peano (pt)
  • Peanos axiom (sv)
  • Аксиомы Пеано (ru)
  • Аксіоми Пеано (uk)
  • 皮亚诺公理 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License