An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In cosmology, decoupling refers to a period in the development of the universe when different types of particles fall out of thermal equilibrium with each other. This occurs as a result of the expansion of the universe, as their interaction rates decrease (and mean free paths increase) up to this critical point. The two verified instances of decoupling since the Big Bang which are most often discussed are photon decoupling and neutrino decoupling, as these led to the cosmic microwave background and cosmic neutrino background, respectively.

Property Value
dbo:abstract
  • In cosmology, decoupling refers to a period in the development of the universe when different types of particles fall out of thermal equilibrium with each other. This occurs as a result of the expansion of the universe, as their interaction rates decrease (and mean free paths increase) up to this critical point. The two verified instances of decoupling since the Big Bang which are most often discussed are photon decoupling and neutrino decoupling, as these led to the cosmic microwave background and cosmic neutrino background, respectively. Photon decoupling is closely related to recombination, which occurred about 378,000 years after the Big Bang (at a redshift of z = 1100), when the universe was a hot opaque ("foggy") plasma. During recombination, free electrons became bound to protons (hydrogen nuclei) to form neutral hydrogen atoms. Because direct recombinations to the ground state (lowest energy) of hydrogen are very inefficient, these hydrogen atoms generally form with the electrons in a high energy state, and the electrons quickly transition to their low energy state by emitting photons. Because the neutral hydrogen that formed was transparent to light, those photons which were not captured by other hydrogen atoms were able, for the first time in the history of the universe, to travel long distances. They can still be detected today, although they now appear as radio waves, and form the cosmic microwave background ("CMB"). They reveal crucial clues about how the universe formed. (en)
  • 退耦(英語:decoupling),在宇宙学中,指各种粒子彼此脱离热平衡的时期。由于宇宙的膨胀,粒子间的平均自由程增加,相互作用频率降低,因此脱离热平衡而发生退耦。目前普遍认为大爆炸后有两种主要的退耦,分别是光子退耦和中微子退耦,且它们分别导致了宇宙微波背景辐射和宇宙中微子背景輻射。 (zh)
dbo:wikiPageID
  • 34782682 (xsd:integer)
dbo:wikiPageLength
  • 7365 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1081196499 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • 退耦(英語:decoupling),在宇宙学中,指各种粒子彼此脱离热平衡的时期。由于宇宙的膨胀,粒子间的平均自由程增加,相互作用频率降低,因此脱离热平衡而发生退耦。目前普遍认为大爆炸后有两种主要的退耦,分别是光子退耦和中微子退耦,且它们分别导致了宇宙微波背景辐射和宇宙中微子背景輻射。 (zh)
  • In cosmology, decoupling refers to a period in the development of the universe when different types of particles fall out of thermal equilibrium with each other. This occurs as a result of the expansion of the universe, as their interaction rates decrease (and mean free paths increase) up to this critical point. The two verified instances of decoupling since the Big Bang which are most often discussed are photon decoupling and neutrino decoupling, as these led to the cosmic microwave background and cosmic neutrino background, respectively. (en)
rdfs:label
  • Decoupling (cosmology) (en)
  • 退耦 (宇宙学) (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License