In model theory, a branch of mathematical logic, Chang's conjecture, attributed to Chen Chung Chang by , p. 309), states that every model of type (ω2,ω1) for a countable language has an elementary submodel of type (ω1, ω). A model is of type (α,β) if it is of cardinality α and a unary relation is represented by a subset of cardinality β. The usual notation is .
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageExternalLink | |
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink | |
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:knownFor of | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of | |
is dbp:knownFor of | |
is foaf:primaryTopic of |