An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, the Carlitz–Wan conjecture classifies the possible degrees of exceptional polynomials over a finite field Fq of q elements. A polynomial f(x) in Fq[x] of degree d is called exceptional over Fq if every irreducible factor (differing from x − y) or (f(x) − f(y))/(x − y)) over Fq becomes reducible over the algebraic closure of Fq. If q > d4, then f(x) is exceptional if and only if f(x) is a permutation polynomial over Fq. The Carlitz–Wan conjecture states that there are no exceptional polynomials of degree d over Fq if gcd(d, q − 1) > 1.

Property Value
dbo:abstract
  • In mathematics, the Carlitz–Wan conjecture classifies the possible degrees of exceptional polynomials over a finite field Fq of q elements. A polynomial f(x) in Fq[x] of degree d is called exceptional over Fq if every irreducible factor (differing from x − y) or (f(x) − f(y))/(x − y)) over Fq becomes reducible over the algebraic closure of Fq. If q > d4, then f(x) is exceptional if and only if f(x) is a permutation polynomial over Fq. The Carlitz–Wan conjecture states that there are no exceptional polynomials of degree d over Fq if gcd(d, q − 1) > 1. In the special case that q is odd and d is even, this conjecture was proposed by Leonard Carlitz (1966) and proved by Fried, Guralnick, and Saxl (1993). The general form of the Carlitz–Wan conjecture was proposed by Daqing Wan (1993) and later proved by Hendrik Lenstra (1995) (en)
dbo:wikiPageID
  • 50550040 (xsd:integer)
dbo:wikiPageLength
  • 2697 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1119755378 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In mathematics, the Carlitz–Wan conjecture classifies the possible degrees of exceptional polynomials over a finite field Fq of q elements. A polynomial f(x) in Fq[x] of degree d is called exceptional over Fq if every irreducible factor (differing from x − y) or (f(x) − f(y))/(x − y)) over Fq becomes reducible over the algebraic closure of Fq. If q > d4, then f(x) is exceptional if and only if f(x) is a permutation polynomial over Fq. The Carlitz–Wan conjecture states that there are no exceptional polynomials of degree d over Fq if gcd(d, q − 1) > 1. (en)
rdfs:label
  • Carlitz–Wan conjecture (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License