An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In the mathematical field of spectral graph theory, Brouwer's conjecture is a conjecture by Andries Brouwer on upper bounds for the intermediate sums of the eigenvalues of the Laplacian of a graph in term of its number of edges. The conjecture states that if G is a simple undirected graph and L(G) its Laplacian matrix, then its eigenvalues λn(L(G)) ≤ λn−1(L(G)) ≤ ... ≤ λ1(L(G)) satisfy where m(G) is the number of edges of G.

Property Value
dbo:abstract
  • In the mathematical field of spectral graph theory, Brouwer's conjecture is a conjecture by Andries Brouwer on upper bounds for the intermediate sums of the eigenvalues of the Laplacian of a graph in term of its number of edges. The conjecture states that if G is a simple undirected graph and L(G) its Laplacian matrix, then its eigenvalues λn(L(G)) ≤ λn−1(L(G)) ≤ ... ≤ λ1(L(G)) satisfy where m(G) is the number of edges of G. (en)
dbo:wikiPageID
  • 63494981 (xsd:integer)
dbo:wikiPageLength
  • 3474 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1049736379 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In the mathematical field of spectral graph theory, Brouwer's conjecture is a conjecture by Andries Brouwer on upper bounds for the intermediate sums of the eigenvalues of the Laplacian of a graph in term of its number of edges. The conjecture states that if G is a simple undirected graph and L(G) its Laplacian matrix, then its eigenvalues λn(L(G)) ≤ λn−1(L(G)) ≤ ... ≤ λ1(L(G)) satisfy where m(G) is the number of edges of G. (en)
rdfs:label
  • Brouwer's conjecture (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License