In the mathematical field of spectral graph theory, Brouwer's conjecture is a conjecture by Andries Brouwer on upper bounds for the intermediate sums of the eigenvalues of the Laplacian of a graph in term of its number of edges. The conjecture states that if G is a simple undirected graph and L(G) its Laplacian matrix, then its eigenvalues λn(L(G)) ≤ λn−1(L(G)) ≤ ... ≤ λ1(L(G)) satisfy where m(G) is the number of edges of G.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink | |
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:knownFor of | |
is dbo:wikiPageWikiLink of | |
is dbp:knownFor of | |
is foaf:primaryTopic of |