About: Beneš method

An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In queueing theory, a discipline within the mathematical theory of probability, Beneš approach or Beneš method is a result for an exact or good approximation to the probability distribution of queue length. It was introduced by Václav E. Beneš in 1963.

Property Value
dbo:abstract
  • In queueing theory, a discipline within the mathematical theory of probability, Beneš approach or Beneš method is a result for an exact or good approximation to the probability distribution of queue length. It was introduced by Václav E. Beneš in 1963. The method introduces a quantity referred to as the "virtual waiting time" to define the remaining workload in the queue at any time. This process is a step function which jumps upward with new arrivals to the system and otherwise is linear with negative gradient. By giving a relation for the distribution of unfinished work in terms of the excess work, the difference between arrivals and potential service capacity, it turns a time-dependent virtual waiting time problem into "an integral that, in principle, can be solved." (en)
dbo:wikiPageID
  • 40880715 (xsd:integer)
dbo:wikiPageLength
  • 2482 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 993330910 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdfs:comment
  • In queueing theory, a discipline within the mathematical theory of probability, Beneš approach or Beneš method is a result for an exact or good approximation to the probability distribution of queue length. It was introduced by Václav E. Beneš in 1963. (en)
rdfs:label
  • Beneš method (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License