An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Beeman's algorithm is a method for numerically integrating ordinary differential equations of order 2, more specifically Newton's equations of motion . It was designed to allow high numbers of particles in simulations of molecular dynamics. There is a direct or explicit and an implicit variant of the method. The direct variant was published by Schofield in 1973 as a personal communication from Beeman. This is what is commonly known as Beeman's method. It is a variant of the Verlet integration method. It produces identical positions, but uses a different formula for the velocities. Beeman in 1976 published a class of implicit (predictor–corrector) multi-step methods, where Beeman's method is the direct variant of the third-order method in this class.

Property Value
dbo:abstract
  • Beeman's algorithm is a method for numerically integrating ordinary differential equations of order 2, more specifically Newton's equations of motion . It was designed to allow high numbers of particles in simulations of molecular dynamics. There is a direct or explicit and an implicit variant of the method. The direct variant was published by Schofield in 1973 as a personal communication from Beeman. This is what is commonly known as Beeman's method. It is a variant of the Verlet integration method. It produces identical positions, but uses a different formula for the velocities. Beeman in 1976 published a class of implicit (predictor–corrector) multi-step methods, where Beeman's method is the direct variant of the third-order method in this class. (en)
dbo:wikiPageID
  • 4077261 (xsd:integer)
dbo:wikiPageLength
  • 6473 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1118906185 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • Beeman's algorithm is a method for numerically integrating ordinary differential equations of order 2, more specifically Newton's equations of motion . It was designed to allow high numbers of particles in simulations of molecular dynamics. There is a direct or explicit and an implicit variant of the method. The direct variant was published by Schofield in 1973 as a personal communication from Beeman. This is what is commonly known as Beeman's method. It is a variant of the Verlet integration method. It produces identical positions, but uses a different formula for the velocities. Beeman in 1976 published a class of implicit (predictor–corrector) multi-step methods, where Beeman's method is the direct variant of the third-order method in this class. (en)
rdfs:label
  • Beeman's algorithm (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License