An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Acid-neutralizing capacity or ANC in short is a measure for the overall buffering capacity against acidification of a solution, e.g. surface water or soil water. ANC is defined as the difference between cations of strong bases and anions of strong acids (see below), or dynamically as the amount of acid needed to change the pH value from the sample's value to a chosen different value. The concepts alkalinity are nowadays often used as a synonym to positive ANC and similarly acidity is often used to mean negative ANC. Alkalinity and acidity however also have definitions based on an experimental setup (titration).

Property Value
dbo:abstract
  • Die Säurepufferkapazität oder Säureneutralisationskapazität ist ein Maß für die gesamte Pufferkapazität gegen die Ansäuerung einer Lösung (wie Oberflächenwasser oder Bodenwasser). Sie wird definiert als die Differenz zwischen den Kationen starker Basen und den Anionen starker Säuren (siehe unten) oder dynamisch als die Menge an Säure, die benötigt wird, um den pH-Wert der Probe auf einen anderen gewählten Wert zu ändern. Das Konzept der Alkalinität wird heute häufig als Synonym zur positiven Säurepufferkapazität verwendet und Acidität als negative Säurepufferkapazität gedeutet. Alkalinität und Acidität haben jedoch eigene Definitionen, die auf einem experimentellen Aufbau (Titration) basieren. Die Säurepufferkapazität wird häufig in Modellen genutzt, um den Versauerungsgrad durch sauren Regen in verschiedenen geografischen Gebieten zu berechnen, sowie als Grundlage für die Berechnung der kritischen Belastungen für Waldböden und Oberflächenwasser. Sobald für einen See die Beziehung von pH-Wert und Säurepufferkapazität erstellt wurde, kann diese verwendet werden, um die Menge an Kalkstein zu berechnen, die benötigt wird, um den pH-Wert auf einen bestimmten Wert einzustellen. Allerdings sind nicht alle sauren Seen aufgrund von menschlichen Einflüssen sauer, da auch ein hoher Anteil an gelöstem organischen Kohlenstoff (DOC) einen niedrigen pH-Wert bewirkt. Das Verhältnis zwischen pH-Wert und Säurepufferkapazität in natürlichen Gewässern hängt von drei Bedingungen ab: Kohlenstoffdioxid, Organische Säuren und Löslichkeit von Aluminium. Bei der Zersetzung von organischem Material wird Kohlenstoffdioxid freigesetzt, wodurch sich die Menge an gelöstem Kohlenstoffdioxid erhöht. Ein Anstieg des Kohlenstoffdioxids senkt zwar den pH-Wert, hat jedoch keinen Einfluss auf die Säurepufferkapazität. Organische Säuren, häufig ausgedrückt als gelöster organischer Kohlenstoff, senken ebenfalls den pH-Wert und haben keinen Einfluss auf die Säurepufferkapazität. Bodenwasser aus den oberen Bodenschichten hat normalerweise einen höheren Anteil an gelöstem organischen Kohlenstoff als das aus den unteren Bodenschichten. Oberflächenwasser mit hohem Anteil an gelöstem organischen Kohlenstoff findet sich in Gebieten, in deren Einzugsbereichen sich viele Moore und Torf befinden. Die Aluminiumlöslichkeit ist schwieriger zu beurteilen und es gibt mehrere Varianten zur Kurvenanpassung, die bei der Modellierung verwendet werden. Gebräuchlich ist folgende: In der Abbildung wird der Zusammenhang von pH-Wert und Säurepufferkapazität für vier verschiedene Lösungen dargestellt. Der blaue Graph stellt eine Lösung mit 1 mg DOC/l dar. Die anderen drei Graphen unterscheiden sich nur hinsichtlich eines Parameters von dem blauen Graphen. Der orange Graph stellt eine Lösung mit organischen Säuren dar, die 80 mg DOC/l enthält (typischerweise sehr braunes Seewasser oder Wasser aus der obersten Schicht des Waldbodens). Der rote Graph stellt eine hohe Menge an gelöstem Kohlenstoffdioxid dar, die im Grundwasser nicht ungewöhnlich ist. Schließlich stellt der schwarze Graph ein Wasser mit geringer Aluminiumlöslichkeit dar. Es ist zu erkennen, dass eine Änderung des Anteils an DOC oder CO2 (oder der Aluminiumlöslichkeit, die jedoch nur schwer zu kontrollieren ist) keine Auswirkungen auf die Säurepufferkapazität hat. Der Grund, weshalb die Säurepufferkapazität häufig als Differenz von Kationen starker Basen und Anionen starker Säuren definiert wird, liegt darin, dass die Säurepufferkapazität aus der Ladungsbilanz abgeleitet wird: Bei einer Lösung mit nur wenigen verschiedenen Ionen und unter Berücksichtigung, dass eine wässrige Lösung elektrisch neutral ist, ergibt sich folgendes Beispiel: Dabei bezeichnet R− ein Anion einer organischen Säure. Die Säurepufferkapazität wird dann definiert, indem alle vom Gleichgewicht kontrollierten Ionenarten (d. h. Arten, die schwachen Säuren und schwachen Basen zuzuordnen sind) auf einer Seite gesammelt werden und auf der anderen Seite alle Ionenarten, die nicht vom Gleichgewicht kontrolliert werden (d. h. Arten, die starken Säuren und starken Basen zuzuordnen sind). Für unser Beispiel von oben erhalten wir: Oder: (de)
  • Acid-neutralizing capacity or ANC in short is a measure for the overall buffering capacity against acidification of a solution, e.g. surface water or soil water. ANC is defined as the difference between cations of strong bases and anions of strong acids (see below), or dynamically as the amount of acid needed to change the pH value from the sample's value to a chosen different value. The concepts alkalinity are nowadays often used as a synonym to positive ANC and similarly acidity is often used to mean negative ANC. Alkalinity and acidity however also have definitions based on an experimental setup (titration). ANC is often used in models to calculate acidification levels from acid rain pollution in different geographical areas, and as a basis for calculating critical loads for forest soils and surface waters. The relation between pH and ANC in natural waters depends on three conditions: Carbon dioxide, organic acids and aluminium solubility. The amount of dissolved carbon dioxide is usually higher than would be the case if there was an equilibrium with the carbon dioxide pressure in the atmosphere. This is due to biological activity: Decomposition of organic material releases carbon dioxide and thus increases the amount of dissolved carbon dioxide. An increase in carbon dioxide decreases pH but has no effect on ANC. Organic acids, often expressed as dissolved organic carbon (DOC), also decrease pH and have no effect on ANC. Soil water in the upper layers usually have higher organic content than the lower soil layers. Surface waters with high DOC are typically found in areas where there is a lot of peat and bogs in the catchment. Aluminium solubility is a bit tricky and there are several curve fit variants used in modelling, one of the more common being In the illustration to the right, the relation between pH and ANC is shown for four different solutions. In the blue line the solution has 1 mg/L DOC, a dissolved amount of carbon dioxide that is equivalent to a solution being in equilibrium with an atmosphere with twice the carbon dioxide pressure of our atmosphere. For the other lines, all three parameters except one is the same as for the blue line. Thus the orange line is a solution loaded with organic acids, having a DOC of 80 mg/L (typically very brown lake water or water in the top soil layer in a forest soil). The red line has a high amount of dissolved carbon dioxide (pCO2=20 times ambient), a level that is not uncommon in ground water. Finally the black dotted line is a water with a lower aluminium solubility. The reason why ANC is often defined as the difference between cations of strong bases and anions of strong acids is that ANC is derived from a charge balance: If we for simplicity consider a solution with only a few species and use the fact that a water solution is electrically neutral we get where R− denote an anion of an organic acid. ANC is then defined by collecting all species controlled by equilibrium (i.e. species related to weak acids and weak bases) on one side and species not controlled by equilibrium (i.e. species related to strong acids and strong bases) on the other side. Thus, with the species above we get or (en)
dbo:thumbnail
dbo:wikiPageID
  • 12201130 (xsd:integer)
dbo:wikiPageLength
  • 4940 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1119310483 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • Die Säurepufferkapazität oder Säureneutralisationskapazität ist ein Maß für die gesamte Pufferkapazität gegen die Ansäuerung einer Lösung (wie Oberflächenwasser oder Bodenwasser). Sie wird definiert als die Differenz zwischen den Kationen starker Basen und den Anionen starker Säuren (siehe unten) oder dynamisch als die Menge an Säure, die benötigt wird, um den pH-Wert der Probe auf einen anderen gewählten Wert zu ändern. Das Konzept der Alkalinität wird heute häufig als Synonym zur positiven Säurepufferkapazität verwendet und Acidität als negative Säurepufferkapazität gedeutet. Alkalinität und Acidität haben jedoch eigene Definitionen, die auf einem experimentellen Aufbau (Titration) basieren. (de)
  • Acid-neutralizing capacity or ANC in short is a measure for the overall buffering capacity against acidification of a solution, e.g. surface water or soil water. ANC is defined as the difference between cations of strong bases and anions of strong acids (see below), or dynamically as the amount of acid needed to change the pH value from the sample's value to a chosen different value. The concepts alkalinity are nowadays often used as a synonym to positive ANC and similarly acidity is often used to mean negative ANC. Alkalinity and acidity however also have definitions based on an experimental setup (titration). (en)
rdfs:label
  • Säurepufferkapazität (de)
  • Acid neutralizing capacity (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License