In logic, an argument is valid if and only if it takes a form that makes it impossible for the premises to be true and the conclusion nevertheless to be false. It is not required that a valid argument have premises that are actually true, but to have premises that, if they were true, would guarantee the truth of the argument's conclusion. A formula is valid if and only if it is true under every interpretation, and an argument form (or schema) is valid if and only if every argument of that logical form is valid.

Property Value
dbo:abstract
  • في المنطق، تكون أي مناقشة صحيحة فقط إذا كانت نتيجتها متضمنة بشكل منطقي بواسطة مقدماتها المنطقية وكانت كل خطوة في المناقشة منطقية. وتكون صيغة صحيحة فقط إذا كانت صحيحة وفق كل تفسير، وتكون صيغة المناقشة (أو خطتها) صحيحة فقط إذا كانت كل مناقشة بهذه الصيغة المنطقية صحيحة. (ar)
  • In einer formalen Logik oder einem Kalkül bezeichnet man eine Formel als allgemeingültig oder gültig, wenn sie von jeder beliebigen Interpretation erfüllt wird. Die Allgemeingültigkeit ist also ein spezieller Fall der Erfüllbarkeit einer Formel. Während die bloße Erfüllbarkeit bereits gegeben ist, wenn sich nur eine einzige erfüllende Interpretation – ein sogenanntes Modell – findet, so sind im Falle einer allgemeingültigen Formel alle Interpretationen Modelle. Der für diese Erläuterung zentrale Begriff der Interpretation lässt sich intuitiv als eine Verallgemeinerung der Variablenbelegung in der Aussagenlogik verstehen: Erst durch die Belegung der Aussagenvariablen einer aussagenlogischen Formel lässt sich der Formel insgesamt ein Wahrheitswert zuschreiben. In komplexeren Logiken müssen ebenfalls Zuordnungen zu den formalen Bestandteilen einer Formel erfolgen, welche den Wahrheitswert der Gesamtformel bestimmen. In der Prädikatenlogik erfolgt beispielsweise die Definition eines Universums und eine Zuordnung von Prädikatensymbolen zu Prädikaten (auf diesem Universum) und von Funktionssymbolen zu Funktionen (auf diesem Universum). Erst durch diesen Bezug auf eine Menge von Objekten in einer betrachteten Welt kann festgestellt werden, ob eine Formel erfüllbar ist und ob sie womöglich immer erfüllt, also allgemeingültig ist. Die folgende Tabelle führt einige eng verwandte Begriffe und Synonyme auf. Die Spalten und stehen in einer Äquivalenzbeziehung, z. B. ist genau dann allgemeingültig, wenn unerfüllbar ist. (de)
  • En logique, la validité est la manière dont les prémisses et la conclusion concordent logiquement dans les arguments réussis. (fr)
  • En lógica, la validez es una propiedad que tienen los argumentos cuando las premisas implican la conclusión. Si la conclusión es una consecuencia lógica de las premisas, se dice que el argumento es deductivamente válido. Algunos consideran estas dos nociones idénticas y usan ambos términos indistintamente. Otros, sin embargo, consideran que puede haber argumentos válidos que no sean deductivamente válidos, como las inducciones. En cualquier caso, de las inducciones a veces se dice que son buenas o malas, en vez de válidas o inválidas. Ejemplos de argumentos deductivamente válidos son los siguientes: Nótese que para que un argumento sea deductivamente válido, no es necesario que las premisas o la conclusión sean verdaderas. Sólo se requiere que la conclusión sea una consecuencia lógica de las premisas. La lógica formal establece únicamente una relación condicional entre las premisas y la conclusión. Esto es: que si las premisas son verdaderas, entonces la conclusión también lo es (esta es la caracterización semántica de la noción de consecuencia lógica); o alternativamente: que la conclusión sea deducible de las premisas conforme a las reglas de un sistema lógico (esta es la caracterización sintáctica de la noción de consecuencia lógica). Si un argumento, además de ser válido, tiene premisas verdaderas, entonces se dice que es sólido. No se debe confundir la validez (una propiedad de los argumentos) con la validez lógica (una propiedad de las fórmulas). Se dice que una fórmula tiene validez lógica, o que es lógicamente válida, cuando es verdadera bajo todas las interpretaciones posibles del lenguaje al que pertenece. Por lo demás, el término «validez lógica» está cayendo en desuso frente al término «verdad lógica» para designar a estas fórmulas. En los sistemas en los que vale el teorema de la deducción, todos los argumentos válidos pueden transformarse en fórmulas lógicamente válidas de la forma , donde las P son las premisas del argumento y C su conclusión. En los sistemas donde vale el converso del teorema, todas las fórmulas lógicamente válidas con la forma se pueden transformar en argumentos válidos con las P como premisas y C como conclusión. Esto muestra que existe una estrecha relación entre la validez de los argumentos y la validez lógica de las fórmulas. (es)
  • In logica, la nozione di validità (validità logica) riguarda innanzitutto, ed in senso generale, la connessione tra l'insieme delle premesse di un argomento e la sua conclusione. In un argomento, le premesse devono in qualche modo giustificare l'affermazione della conclusione: esse devono fornire un fondamento all'affermazione della conclusione. Questa giustificazione deve a sua volta inevitabilmente fondarsi su una connessione tra l'insieme delle premesse e la conclusione: è perché le premesse sono connesse in un certo modo alla conclusione, che le premesse rappresentano una ragione per l'affermazione della conclusione. Un argomento si dice logicamente valido quando la connessione tra l'insieme delle premesse e la conclusione è di natura esclusivamente logica. Perciò, un argomento è logicamente valido se e solo se tra l'insieme delle premesse e la conclusione dell'argomento sussiste una connessione logica. (it)
  • 妥当性(英: Validity)は、演繹的論証が持つ論理的特性であるが、一般に任意の文に対して使われる(ここでいう文とは、真か偽かという真理値を持つものをいう)。ここでは、論証を文の集まりとし、そのうちの1つの文が結論で残りは前提であるとする。前提とは、結論が(おそらく)真であると示す根拠である。 論証の結論が「確かに」真であるとされている場合、その論証は演繹的である。結論が「おそらく」真であるとされている論証は帰納的であると言われる。ある論証が妥当であるとは、結論が正しく前提から導き出されることを意味する。すなわち、妥当な演繹的論証であれば、真の前提から偽の結論が導き出されることはあり得ない。(一方、前提に偽がある場合には、真・偽どちらの結論も導き出されうる。) 次のような定義が一般的である。 * 論証が「演繹的に妥当」であるとは、「前提がすべて真で、かつ結論が偽」となることがないことをいう。(言いかえれば「前提が真ならば、結論が必ず真」)   (なお前述からも分かるように、帰納的論証の場合には、形式が「妥当」であっても、真なる前提から導かれた結論が偽であることが「けしてない」とまでは言えない。) 妥当でない論証は「不当; invalid」である。 (ja)
  • O termo validade (também chamada verdade lógica, verdade analítica, ou verdade necessária), em lógica, refere-se geralmente a uma propriedade de enunciados particulares e de argumentos dedutivos. (pt)
  • 在逻辑中,如果一个论证不能从真前提中得出假结论,则论证的形式是完全有效的。一个论证若被称为是有效的,则如果在其中所有前提都为真的每个模型中,结论也是真的。例如:“所有A是B;有些A是C;所以有些B是C”是有效形式。 * 一个逻辑公式被称为是有效的,如果它在所有释义(也叫做结构或模型)下都是真的。参见模型论或数理逻辑。 * 一个重言式,或重言公式,是真值泛函有效的。不是所有量化逻辑的有效的公式都是重言式。参见真值表。 (zh)
  • In logic, an argument is valid if and only if it takes a form that makes it impossible for the premises to be true and the conclusion nevertheless to be false. It is not required that a valid argument have premises that are actually true, but to have premises that, if they were true, would guarantee the truth of the argument's conclusion. A formula is valid if and only if it is true under every interpretation, and an argument form (or schema) is valid if and only if every argument of that logical form is valid. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 21304742 (xsd:integer)
dbo:wikiPageRevisionID
  • 728954417 (xsd:integer)
dbp:b
  • no
dbp:commons
  • no
dbp:d
  • no
dbp:n
  • no
dbp:q
  • no
dbp:s
  • no
dbp:species
  • no
dbp:v
  • no
dbp:voy
  • no
dbp:wikt
  • validity
dct:subject
rdfs:comment
  • في المنطق، تكون أي مناقشة صحيحة فقط إذا كانت نتيجتها متضمنة بشكل منطقي بواسطة مقدماتها المنطقية وكانت كل خطوة في المناقشة منطقية. وتكون صيغة صحيحة فقط إذا كانت صحيحة وفق كل تفسير، وتكون صيغة المناقشة (أو خطتها) صحيحة فقط إذا كانت كل مناقشة بهذه الصيغة المنطقية صحيحة. (ar)
  • En logique, la validité est la manière dont les prémisses et la conclusion concordent logiquement dans les arguments réussis. (fr)
  • 妥当性(英: Validity)は、演繹的論証が持つ論理的特性であるが、一般に任意の文に対して使われる(ここでいう文とは、真か偽かという真理値を持つものをいう)。ここでは、論証を文の集まりとし、そのうちの1つの文が結論で残りは前提であるとする。前提とは、結論が(おそらく)真であると示す根拠である。 論証の結論が「確かに」真であるとされている場合、その論証は演繹的である。結論が「おそらく」真であるとされている論証は帰納的であると言われる。ある論証が妥当であるとは、結論が正しく前提から導き出されることを意味する。すなわち、妥当な演繹的論証であれば、真の前提から偽の結論が導き出されることはあり得ない。(一方、前提に偽がある場合には、真・偽どちらの結論も導き出されうる。) 次のような定義が一般的である。 * 論証が「演繹的に妥当」であるとは、「前提がすべて真で、かつ結論が偽」となることがないことをいう。(言いかえれば「前提が真ならば、結論が必ず真」)   (なお前述からも分かるように、帰納的論証の場合には、形式が「妥当」であっても、真なる前提から導かれた結論が偽であることが「けしてない」とまでは言えない。) 妥当でない論証は「不当; invalid」である。 (ja)
  • O termo validade (também chamada verdade lógica, verdade analítica, ou verdade necessária), em lógica, refere-se geralmente a uma propriedade de enunciados particulares e de argumentos dedutivos. (pt)
  • 在逻辑中,如果一个论证不能从真前提中得出假结论,则论证的形式是完全有效的。一个论证若被称为是有效的,则如果在其中所有前提都为真的每个模型中,结论也是真的。例如:“所有A是B;有些A是C;所以有些B是C”是有效形式。 * 一个逻辑公式被称为是有效的,如果它在所有释义(也叫做结构或模型)下都是真的。参见模型论或数理逻辑。 * 一个重言式,或重言公式,是真值泛函有效的。不是所有量化逻辑的有效的公式都是重言式。参见真值表。 (zh)
  • In logic, an argument is valid if and only if it takes a form that makes it impossible for the premises to be true and the conclusion nevertheless to be false. It is not required that a valid argument have premises that are actually true, but to have premises that, if they were true, would guarantee the truth of the argument's conclusion. A formula is valid if and only if it is true under every interpretation, and an argument form (or schema) is valid if and only if every argument of that logical form is valid. (en)
  • In einer formalen Logik oder einem Kalkül bezeichnet man eine Formel als allgemeingültig oder gültig, wenn sie von jeder beliebigen Interpretation erfüllt wird. Die Allgemeingültigkeit ist also ein spezieller Fall der Erfüllbarkeit einer Formel. Während die bloße Erfüllbarkeit bereits gegeben ist, wenn sich nur eine einzige erfüllende Interpretation – ein sogenanntes Modell – findet, so sind im Falle einer allgemeingültigen Formel alle Interpretationen Modelle. Die folgende Tabelle führt einige eng verwandte Begriffe und Synonyme auf. Die Spalten und genau dann allgemeingültig, wenn (de)
  • En lógica, la validez es una propiedad que tienen los argumentos cuando las premisas implican la conclusión. Si la conclusión es una consecuencia lógica de las premisas, se dice que el argumento es deductivamente válido. Algunos consideran estas dos nociones idénticas y usan ambos términos indistintamente. Otros, sin embargo, consideran que puede haber argumentos válidos que no sean deductivamente válidos, como las inducciones. En cualquier caso, de las inducciones a veces se dice que son buenas o malas, en vez de válidas o inválidas. (es)
  • In logica, la nozione di validità (validità logica) riguarda innanzitutto, ed in senso generale, la connessione tra l'insieme delle premesse di un argomento e la sua conclusione. In un argomento, le premesse devono in qualche modo giustificare l'affermazione della conclusione: esse devono fornire un fondamento all'affermazione della conclusione. Questa giustificazione deve a sua volta inevitabilmente fondarsi su una connessione tra l'insieme delle premesse e la conclusione: è perché le premesse sono connesse in un certo modo alla conclusione, che le premesse rappresentano una ragione per l'affermazione della conclusione. (it)
rdfs:label
  • صحة (المنطق) (ar)
  • Allgemeingültigkeit (de)
  • Validez (lógica) (es)
  • Validité (logique) (fr)
  • Validità (logica) (it)
  • 妥当性 (ja)
  • Validade (pt)
  • 有效性 (zh)
  • Validity (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is http://purl.org/linguistics/gold/hypernym of
is foaf:primaryTopic of