In mathematics before the 1970s, the term umbral calculus referred to the surprising similarity between seemingly unrelated polynomial equations and certain shadowy techniques used to 'prove' them. These techniques were introduced by John Blissard () and are sometimes called Blissard's symbolic method. They are often attributed to Édouard Lucas (or James Joseph Sylvester), who used the technique extensively. In the 1930s and 1940s, Eric Temple Bell attempted to set the umbral calculus on a rigorous footing.

Property Value
dbo:abstract
  • In mathematics before the 1970s, the term umbral calculus referred to the surprising similarity between seemingly unrelated polynomial equations and certain shadowy techniques used to 'prove' them. These techniques were introduced by John Blissard () and are sometimes called Blissard's symbolic method. They are often attributed to Édouard Lucas (or James Joseph Sylvester), who used the technique extensively. In the 1930s and 1940s, Eric Temple Bell attempted to set the umbral calculus on a rigorous footing. In the 1970s, Steven Roman, Gian-Carlo Rota, and others developed the umbral calculus by means of linear functionals on spaces of polynomials. Currently, umbral calculus refers to the study of Sheffer sequences, including polynomial sequences of binomial type and Appell sequences, but may encompass in its penumbra systematic correspondence techniques of the calculus of finite differences. (en)
  • En mathématiques, le calcul ombral est le nom d'un ensemble de techniques de calcul formel qui, avant les années 1970, était plutôt appelé calcul symbolique. Il s'agit de l'étude des similarités surprenantes entre certaines formules polynomiales a priori non reliées entre elles, et d'un ensemble de règles de manipulation (au demeurant assez peu claires) pouvant être utilisées pour les obtenir (mais non les démontrer). Ces techniques furent introduites en 1861 par John Blissard (en) (et sont parfois connues sous le nom de méthode symbolique de Blissard), mais elles sont souvent attribuées à James Joseph Sylvester, qui les utilisa de manière extensive, ou à Édouard Lucas. On a parfois également employé le terme de calcul symbolique pour désigner le calcul opérationnel de Heaviside, mais les deux méthodes n'ont que peu de points communs. Dans les années 1930 et 1940, Eric Temple Bell essaya, sans grand succès, de donner des bases rigoureuses au calcul ombral. Dans les années 1970, Steven Roman, Gian-Carlo Rota et d'autres développèrent le calcul ombral du point de vue des formes linéaires sur les espaces de polynômes. Actuellement, le calcul ombral est ainsi compris comme l'étude de certaines suites de polynômes, les suites de Sheffer, incluant les suites de polynômes de type binomial (en) (liées aux polynômes de Bell) et les suites d'Appell (en). (fr)
  • In matematica, prima degli anni 1970, con il termine calcolo umbrale si indicavano le sorprendenti somiglianze tra molte equazioni polinomiali allora prive di collegamenti logici, nonché certe tecniche poco giustificate che potevano essere usate per 'dimostrare' tali equazioni. Queste tecniche erano state introdotte nel XIX secolo e da taluni sono state chiamate metodo simbolico di Blissard, da altri sono state attribuite a James Joseph Sylvester (che le ha utilizzate ampiamente) e da altri ancora a Edouard Lucas. Negli anni 1930 e 1940 Eric Temple Bell ha cercato di fornire il calcolo umbrale di fondamenti rigorosi, riuscendoci solo in parte. Negli anni 1970 Gian-Carlo Rota, Steven Roman e altri sono riusciti a sviluppare il calcolo umbrale sulla solida base dei funzionali lineari sugli spazi di polinomi. Attualmente il calcolo umbrale viene considerato essenzialmente uno strumento per lo studio delle sequenze di Sheffer, e in particolare delle sequenze polinomiali di tipo binomiale e delle sequenze di Appell. (it)
  • 1970年代以前の数学において "umbral calculus"(陰影の算法、陰計算(いんけいさん))は、ある種の「証明」に用いられるある種の暗喩的手法と、それとは一見して無関係のはずの多項式方程式との間に横たわる驚くべき関係についていうものであった。これらの手法は John Blissard () で導入されたもので、ブリザードの記号法 (Blissard's symbolic method) と呼ばれることもある。理論の展開には、この手法を広く用いたリュカ(やシルヴェスター)の貢献もある。 1930-40年代にエリック・テンプル・ベルは umbral calculus に厳格な足場を築くことを試みた。 1970年代に、スティーヴン・ローマン、ジャン・カルロ・ロタらは、多項式からなる空間上の線型汎函数を用いて umbral calculus を展開した。現在においては、umbral calculus とは(二項型およびアペル多項式列を含む)シェファー列の研究を指す言葉になっているが、それらもまた対応する系統的な(和分)差分学周辺の手法に包摂される。 (ja)
  • Em matemática, costumava-se utilizar o termo cálculo umbral em referência a surpreendentes similaridades entre equações polinomiais e certas técnicas empíricas utilizadas para 'demonstrá-las'. Tais técnicas foram apresentadas por John Blissard em 1861, sendo por vezes chamadas de método simbólico de Blissard. São eventualmente atribuídas a Édouard Lucas ou James Joseph Sylvester, que usaram estas técnicas extensivamente. Nas décadas de 1930 e 1940, Eric Temple Bell esforçou-se por estabelecer uma justificativa matemática rigorosa para o cálculo umbral, sem lograr êxito completo. Na década de 1970, Steven Roman, Gian-Carlo Rota e outros matemáticos desenvolveram um arcabouço teórico para o justificar o cálculo umbral através de formas lineares em espaços de polinômios. Atualmente, por cálculo umbral entende-se principalmente o método de estudo de sequências de Sheffer, aí incluídas as sequências polinomiais do tipo binomial, assim como sequências de Appell. (pt)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 214124 (xsd:integer)
dbo:wikiPageRevisionID
  • 678316450 (xsd:integer)
dbp:authorlink
  • John Blissard
dbp:first
  • John
  • S.
dbp:id
  • U/u095050
dbp:last
  • Roman
  • Blissard
dbp:title
  • Umbral Calculus
  • Umbral calculus
dbp:urlname
  • UmbralCalculus
dbp:year
  • 1861 (xsd:integer)
dct:subject
rdf:type
rdfs:comment
  • 1970年代以前の数学において "umbral calculus"(陰影の算法、陰計算(いんけいさん))は、ある種の「証明」に用いられるある種の暗喩的手法と、それとは一見して無関係のはずの多項式方程式との間に横たわる驚くべき関係についていうものであった。これらの手法は John Blissard () で導入されたもので、ブリザードの記号法 (Blissard's symbolic method) と呼ばれることもある。理論の展開には、この手法を広く用いたリュカ(やシルヴェスター)の貢献もある。 1930-40年代にエリック・テンプル・ベルは umbral calculus に厳格な足場を築くことを試みた。 1970年代に、スティーヴン・ローマン、ジャン・カルロ・ロタらは、多項式からなる空間上の線型汎函数を用いて umbral calculus を展開した。現在においては、umbral calculus とは(二項型およびアペル多項式列を含む)シェファー列の研究を指す言葉になっているが、それらもまた対応する系統的な(和分)差分学周辺の手法に包摂される。 (ja)
  • In mathematics before the 1970s, the term umbral calculus referred to the surprising similarity between seemingly unrelated polynomial equations and certain shadowy techniques used to 'prove' them. These techniques were introduced by John Blissard () and are sometimes called Blissard's symbolic method. They are often attributed to Édouard Lucas (or James Joseph Sylvester), who used the technique extensively. In the 1930s and 1940s, Eric Temple Bell attempted to set the umbral calculus on a rigorous footing. (en)
  • In matematica, prima degli anni 1970, con il termine calcolo umbrale si indicavano le sorprendenti somiglianze tra molte equazioni polinomiali allora prive di collegamenti logici, nonché certe tecniche poco giustificate che potevano essere usate per 'dimostrare' tali equazioni. Queste tecniche erano state introdotte nel XIX secolo e da taluni sono state chiamate metodo simbolico di Blissard, da altri sono state attribuite a James Joseph Sylvester (che le ha utilizzate ampiamente) e da altri ancora a Edouard Lucas. (it)
  • En mathématiques, le calcul ombral est le nom d'un ensemble de techniques de calcul formel qui, avant les années 1970, était plutôt appelé calcul symbolique. Il s'agit de l'étude des similarités surprenantes entre certaines formules polynomiales a priori non reliées entre elles, et d'un ensemble de règles de manipulation (au demeurant assez peu claires) pouvant être utilisées pour les obtenir (mais non les démontrer). Ces techniques furent introduites en 1861 par John Blissard (en) (et sont parfois connues sous le nom de méthode symbolique de Blissard), mais elles sont souvent attribuées à James Joseph Sylvester, qui les utilisa de manière extensive, ou à Édouard Lucas. On a parfois également employé le terme de calcul symbolique pour désigner le calcul opérationnel de Heaviside, mais les (fr)
  • Em matemática, costumava-se utilizar o termo cálculo umbral em referência a surpreendentes similaridades entre equações polinomiais e certas técnicas empíricas utilizadas para 'demonstrá-las'. Tais técnicas foram apresentadas por John Blissard em 1861, sendo por vezes chamadas de método simbólico de Blissard. São eventualmente atribuídas a Édouard Lucas ou James Joseph Sylvester, que usaram estas técnicas extensivamente. Nas décadas de 1930 e 1940, Eric Temple Bell esforçou-se por estabelecer uma justificativa matemática rigorosa para o cálculo umbral, sem lograr êxito completo. (pt)
rdfs:label
  • Umbral calculus (en)
  • Calcul ombral (fr)
  • Calcolo umbrale (it)
  • 陰計算 (ja)
  • Cálculo umbral (pt)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is foaf:primaryTopic of